Home
Class 12
MATHS
|(1+a(1),a2,a3),(a1,1+a2,a3),(a1,a2,1+a3...

`|(1+a_(1),a_2,a_3),(a_1,1+a_2,a_3),(a_1,a_2,1+a_3)|=1+a_1+a_2+a_3`.True or False .

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the statement \( |(1 + a_1, a_2, a_3), (a_1, 1 + a_2, a_3), (a_1, a_2, 1 + a_3)| = 1 + a_1 + a_2 + a_3 \) is true or false, we will compute the determinant on the left-hand side (LHS) and check if it equals the right-hand side (RHS). ### Step-by-Step Solution: 1. **Write the Determinant**: \[ D = \begin{vmatrix} 1 + a_1 & a_2 & a_3 \\ a_1 & 1 + a_2 & a_3 \\ a_1 & a_2 & 1 + a_3 \end{vmatrix} \] 2. **Apply Column Operation**: We can simplify the determinant by adding all columns together. Let's perform the operation \( C_1 \leftarrow C_1 + C_2 + C_3 \): \[ D = \begin{vmatrix} (1 + a_1 + a_2 + a_3) & a_2 & a_3 \\ (a_1 + 1 + a_2 + a_3) & 1 + a_2 & a_3 \\ (a_1 + a_2 + 1 + a_3) & a_2 & 1 + a_3 \end{vmatrix} \] 3. **Simplify the Determinant**: The first column now has the first element as \( 1 + a_1 + a_2 + a_3 \), and the other elements can be simplified: \[ D = \begin{vmatrix} 1 + a_1 + a_2 + a_3 & a_2 & a_3 \\ 1 + a_2 + a_3 & 1 + a_2 & a_3 \\ 1 + a_1 + a_3 & a_2 & 1 + a_3 \end{vmatrix} \] 4. **Row Operation**: Now, we can perform a row operation to simplify further. Let's subtract the second row from the first row: \[ D = \begin{vmatrix} 0 & a_2 & a_3 \\ 1 + a_2 + a_3 & 1 + a_2 & a_3 \\ 1 + a_1 + a_3 & a_2 & 1 + a_3 \end{vmatrix} \] 5. **Expand the Determinant**: Now we can expand the determinant using the first row: \[ D = (1 + a_1 + a_2 + a_3) \cdot \begin{vmatrix} 1 + a_2 & a_3 \\ a_2 & 1 + a_3 \end{vmatrix} \] 6. **Calculate the 2x2 Determinant**: The determinant of the 2x2 matrix is calculated as: \[ \begin{vmatrix} 1 + a_2 & a_3 \\ a_2 & 1 + a_3 \end{vmatrix} = (1 + a_2)(1 + a_3) - a_2 a_3 = 1 + a_2 + a_3 + a_2 a_3 - a_2 a_3 = 1 + a_2 + a_3 \] 7. **Final Calculation**: Thus, we have: \[ D = (1 + a_1 + a_2 + a_3)(1 + a_2 + a_3) \] 8. **Conclusion**: This shows that \( D = 1 + a_1 + a_2 + a_3 \), confirming that the original statement is true. ### Final Result: The statement \( |(1 + a_1, a_2, a_3), (a_1, 1 + a_2, a_3), (a_1, a_2, 1 + a_3)| = 1 + a_1 + a_2 + a_3 \) is **True**.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE) |3 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If p(x),q(x) and r(x) be polynomials of degree one and a_1,a_2,a_3 be real numbers then |(p(a_1), p(a_2),p(a_3)),(q(a_1), q(a_2),q(a_3)),(r(a_1), r(a_2),r(a_3))|= (A) 0 (B) 1 (C) -1 (D) none of these

If a_1,a_2,a_3,………….a_12 are in A.P. and /_\_1 =|(a_1a_5, a_1,a_2),(a_2a_6,a_2,a_3),(a_3a_7,a_3,a_4)|, |(a_2a_10, a_2,a_3),(a_3a_11,a_3,a_4),(a_4_12,a_4,a_5)| then /_\_1:/_\_2= (A) 1:2 (B) 2:1 (C) 1:1 (D) none of these

Evaluate: /_\ |[1+a_1, a_2, a_3],[a_1, 1+a_2, a_3],[a_1, a_2, 1+a_3]|

If 2^(a1),2^(a2),2^(a3).......2^(ar) are in geometric progression , then |{:(a_1,a_2,a_3),(a_(n+1),a_(n+2),a_(n+3)),(a_(2n+1),a_(2n+2),a_(2n+3)):}| is equal to

If (a_2 a_3)/(a_1 a_4) = (a_2 + a_3)/(a_1 + a_4) = 3 ((a_2 - a_3)/(a_1 - a_4)) then a_1, a_2, a_3, a_4 are in

If (a_2a_3)/(a_1a_4) = (a_2+a_3)/(a_1+a_4)=3 ((a_2 -a_3)/(a_1-a_4)) then a_1,a_2, a_3 , a_4 are in :

|(a_1-b_1+x,a_1-b_2,a_1-b_3),(a_2-b_1,a_2-b_2+x,a_2-b_3),(a_3-b_1,a_3-b_2,a_3-b_3+x)| =x^3+x^2sum_(i=l)^3(a_i-b_i)+xsum_(l lt=i < j <= 3)^3 (a_i-b_i)+x sum_(l <= i < j <= 3)(a_i-b_j)(b_i-b_j).

If a_1,a_2,….a_n are in H.P then (a_1)/(a_2+,a_3,…,a_n),(a_2)/(a_1+a_3+….+a_n),…,(a_n)/(a_1+a_2+….+a_(n-1)) are in