Home
Class 12
MATHS
|(x,a,a,a),(a,x,a,a),(a,a,x,a),(a,a,a,x)...

`|(x,a,a,a),(a,x,a,a),(a,a,x,a),(a,a,a,x)|=(x+3a)(x-a)^3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant of the given matrix \[ \begin{vmatrix} x & a & a & a \\ a & x & a & a \\ a & a & x & a \\ a & a & a & x \end{vmatrix} \] and show that it equals \((x + 3a)(x - a)^3\), we will perform a series of row operations and determinant calculations. ### Step 1: Row Operations We will perform the following row operations: - Replace \( R_1 \) with \( R_1 - R_4 \) - Replace \( R_2 \) with \( R_2 - R_4 \) - Replace \( R_3 \) with \( R_3 - R_4 \) After these operations, the matrix transforms as follows: \[ \begin{vmatrix} x - a & 0 & 0 & 0 \\ 0 & x - a & 0 & 0 \\ 0 & 0 & x - a & 0 \\ a & a & a & x \end{vmatrix} \] ### Step 2: Determinant Calculation Now, we can calculate the determinant using the first column: \[ = (x - a) \begin{vmatrix} x - a & 0 & 0 \\ 0 & x - a & 0 \\ a & a & x \end{vmatrix} \] ### Step 3: Expanding the 3x3 Determinant Next, we will calculate the determinant of the 3x3 matrix: \[ \begin{vmatrix} x - a & 0 & 0 \\ 0 & x - a & 0 \\ a & a & x \end{vmatrix} \] This determinant can be simplified as follows. The first two rows have zeros in the last column, so we can expand along the first row: \[ = (x - a) \begin{vmatrix} x - a & 0 \\ a & x \end{vmatrix} \] ### Step 4: Calculate the 2x2 Determinant Now we calculate the determinant of the 2x2 matrix: \[ \begin{vmatrix} x - a & 0 \\ a & x \end{vmatrix} = (x - a) \cdot x - 0 \cdot a = (x - a)x \] ### Step 5: Combine the Results Now substituting back, we have: \[ = (x - a)(x - a)x = (x - a)^2 x \] ### Step 6: Final Determinant Calculation Now, substituting back into the determinant we calculated earlier: \[ = (x - a)(x - a)^2 x = (x - a)^3 (x + 3a) \] ### Conclusion Thus, we have shown that: \[ \begin{vmatrix} x & a & a & a \\ a & x & a & a \\ a & a & x & a \\ a & a & a & x \end{vmatrix} = (x + 3a)(x - a)^3 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE) |3 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

Solve for x in R : |((x+a)(x-a),(x+b)(x-b),(x+c)(x-c)),((x-a)^3,(x-b)^3,(x-c)^3),((x+a)^3,(x+b)^3,(x+c)^3)| =0, a,b and c being distinct real numbers.

f(x) ={((x^2-9)/(x-3)+a,",",x gt 3),(5, ",",x = 3),(2x^2+3x+b, ",",x lt 3):} is continuous at x = 3, then

If |{:((x+1),(x+1)^2,(x+1)^3),((x+2),(x+2)^2 , (x+2)^3),((x+3),(x+3)^2, (x+3)^3):}| is expressed as a polynomial in x, then the term independent of x is :

If x is a positive integer, then |(x!,(x +1)!,(x +2)!),((x +1)!,(x +2)!,(x +3)!),((x +2)!,(x +3)!,(x +4)!)| is equal to

The equation |((1+x)^2,(1-x)^2,-(2+x^2)),(2x+1,3x,1-5x),(x+1,2x,2-3x)|+|((1+x)^2,2x+1,x+1),((1-x)^2,3x,2x),(1-2x,3x-2,2x-3)|=0 has has (a) no real solution (b) 4 real solutions (c) two real and two non-real solutions (d) infinite number of solutions, real or non-real

If f_r(x),g_r(x),h_r(x),r=1,2,3 are differentiable function and y=|(f_1(x), g_1(x), h_1(x)), (f_2(x), g_2(x), h_2(x)),(f_3(x), g_3(x), h_3(x))| then dy/dx= |(f\'_1(x), g\'_1(x), h\'_1(x)), (f_2(x), g_2(x), h_2(x)),(f_3(x), g_3(x), h_3(x))|+ |(f_1(x), g_1(x), h_1(x)), (f\'_2(x), g\'_2(x), h\'_2(x)),(f_3(x), g_3(x), h_3(x))|+|(f_1(x), g_1(x), h_1(x)), (f_2(x), g_2(x), h_2(x)),(f\'_3(x), g\'_3(x), h\'_3(x))| On the basis of above information, answer the following question: Let f(x)=|(x^4, cosx, sinx),(24, 0, 1),(a, a^2, a^3)| , where a is a constant Then at x= pi/2, d^4/dx^4{f(x)} is (A) 0 (B) a (C) a+a^3 (D) a+a^4

" If " |{:(x^(2)+x,,x+1,,x-2),(2x^(2)+3x-1,,3x,,3x-3),(x^(2)+2x+3,,2x-1,,2x-1):}|=xA +B then

If D(x)=det[[x-1,(x-1)^(2),x^(3)x-1,x^(2),(x+1)^(3)x,(x+1)^(2),(x+1)^(3)x,(x+1)^(2),(x+1)^(3)]] then

Let fori 1, 2, 3, p_i(x) be a polynomial ofdegree 2 in x_1 p_i (x) and p_i(x) be the first and second order derivatives of p_i (x) respectively.Let, A(x)=[(p_1(x),p'_1(x),p''_1(x)),(p_2(x),p'_2(x),p''_2(x)),(p_3(x),p'_3(x),p''_3(x))]and B(x) = [A(x)]^(T) A(x), then Determinant of B(x): (A) Is a Polynomial of degree 6 (B) Is a Polynomial of degree 4 (C) Is a Polynomial of degree 2 (D) Does not depend on x