Home
Class 12
MATHS
|(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|...

`|(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=........`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( D = \begin{vmatrix} \frac{1}{a} & a^2 & bc \\ \frac{1}{b} & b^2 & ca \\ \frac{1}{c} & c^2 & ab \end{vmatrix} \), we will follow these steps: ### Step 1: Factor out common terms from each row We can factor out \( a \) from the first row, \( b \) from the second row, and \( c \) from the third row. This gives us: \[ D = \begin{vmatrix} \frac{1}{a} & a^2 & bc \\ \frac{1}{b} & b^2 & ca \\ \frac{1}{c} & c^2 & ab \end{vmatrix} = \frac{1}{a} \cdot \frac{1}{b} \cdot \frac{1}{c} \begin{vmatrix} 1 & a^3 & abc \\ 1 & b^3 & abc \\ 1 & c^3 & abc \end{vmatrix} \] ### Step 2: Simplifying the determinant Now we can simplify the determinant: \[ D = \frac{1}{abc} \begin{vmatrix} 1 & a^3 & abc \\ 1 & b^3 & abc \\ 1 & c^3 & abc \end{vmatrix} \] ### Step 3: Subtract the first row from the second and third rows Next, we can perform row operations to simplify the determinant further. Subtract the first row from the second and third rows: \[ D = \frac{1}{abc} \begin{vmatrix} 1 & a^3 & abc \\ 0 & b^3 - a^3 & 0 \\ 0 & c^3 - a^3 & 0 \end{vmatrix} \] ### Step 4: Evaluate the determinant Notice that the last two rows have a zero in the last column. Thus, the determinant evaluates to zero: \[ D = \frac{1}{abc} \cdot 0 = 0 \] ### Final Answer The value of the determinant is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE) |3 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

|[1,a^(2),bc],[1,b^(2),ca],[1,c^(2),ab]|

Show without expanding at any stage that: [1/a, a^2, bc],[1/b, b^2, ca],[1/c, c^2, ab]|=0

Without expanding the determinant , prove that |{:(a, a^(2),bc),(b,b^(2),ca),(c,c^(2),ab):}|=|{:(1,a^(2),a^(3)),(1,b^(2),b^(3)),(1,c^(2),c^(3)):}|

Prove the following : |{:(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab):}|=|{:(a,a^(2),bc),(b,b^(2),ca),(c,c^(2),ab):}|=(ab+bc+ca)(a-b)(b-c)(c-a) .

The value of |(a,a^(2) - bc,1),(b,b^(2) - ca,1),(c,c^(2) - ab,1)| , is

|[1,a,bc] , [1,b,ca] , [1,c,ab]|=

|[a,a^(2),bc],[b,b^(2),ca],[c,c^(2),ab]|=|[1,a^(2),a^(3)],[1,b^(2),b^(3)],[1,c^(2),c^(3)]|

The determinants |{:(1,a, bc),(1, b, ca),(1, c, ab):}| " and "|{:(1,a, a^(2)),(1, b, b^(2)),(1, c, c^(2)):}| are not identically equal.