Home
Class 12
MATHS
int(0)^(a) (dx)/(x+ sqrt""(a^(2) -x^(2))...

`int_(0)^(a) (dx)/(x+ sqrt""(a^(2) -x^(2)))`=

A

`(pi)/(4)`

B

`(pi)/(2)`

C

`pi`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{a} \frac{dx}{x + \sqrt{a^2 - x^2}} \), we will use a trigonometric substitution. Here are the steps: ### Step 1: Trigonometric Substitution Let \( x = a \cos \theta \). Then, we differentiate to find \( dx \): \[ dx = -a \sin \theta \, d\theta \] ### Step 2: Change the Limits of Integration When \( x = 0 \): \[ 0 = a \cos \theta \implies \cos \theta = 0 \implies \theta = \frac{\pi}{2} \] When \( x = a \): \[ a = a \cos \theta \implies \cos \theta = 1 \implies \theta = 0 \] Thus, the limits change from \( x = 0 \) to \( x = a \) into \( \theta = \frac{\pi}{2} \) to \( \theta = 0 \). ### Step 3: Substitute into the Integral Substituting \( x \) and \( dx \) into the integral: \[ I = \int_{\frac{\pi}{2}}^{0} \frac{-a \sin \theta \, d\theta}{a \cos \theta + \sqrt{a^2 - (a \cos \theta)^2}} \] Simplifying the square root: \[ \sqrt{a^2 - a^2 \cos^2 \theta} = \sqrt{a^2(1 - \cos^2 \theta)} = a \sin \theta \] Thus, the integral becomes: \[ I = \int_{\frac{\pi}{2}}^{0} \frac{-a \sin \theta \, d\theta}{a \cos \theta + a \sin \theta} = \int_{\frac{\pi}{2}}^{0} \frac{-a \sin \theta \, d\theta}{a(\cos \theta + \sin \theta)} \] This simplifies to: \[ I = -\int_{\frac{\pi}{2}}^{0} \frac{\sin \theta \, d\theta}{\cos \theta + \sin \theta} \] ### Step 4: Reverse the Limits Reversing the limits changes the sign: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin \theta \, d\theta}{\cos \theta + \sin \theta} \] ### Step 5: Add Two Integrals Let \( J = \int_{0}^{\frac{\pi}{2}} \frac{\cos \theta \, d\theta}{\cos \theta + \sin \theta} \). Now, we can add \( I \) and \( J \): \[ I + J = \int_{0}^{\frac{\pi}{2}} \frac{\sin \theta + \cos \theta}{\cos \theta + \sin \theta} \, d\theta = \int_{0}^{\frac{\pi}{2}} d\theta = \frac{\pi}{2} \] ### Step 6: Solve for \( I \) Since \( I = J \): \[ 2I = \frac{\pi}{2} \implies I = \frac{\pi}{4} \] Thus, the value of the integral is: \[ \boxed{\frac{\pi}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (3) (Multiple Choice Questions)|38 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(a) (x)/(sqrt(a^(2)-x^(2)))dx

int_(0)^(a)(dx)/(sqrt(ax-x^(2)))

int_(0)^(1)(dx)/(x sqrt(x^(2)-1)) =

int_(0)^(2)(dx)/(x+sqrt(4-x^(2)))

int_(0)^(a)(1)/(x+sqrt(a^(2)-x^(2)))dx

Evaluate: int_(0)^(a)(x^(4))/(sqrt(a^(2)-x^(2)))dx

Evaluate int_(0)^(a) x^(4)sqrt(a^(2)-x^(2))dx

int_(0)^(1)(dx)/(sqrt(x^(2)-x+1))

int_(0)^(1)(dx)/(sqrt(x^(2)-x+1))

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (2) (Multiple Choice Questions)
  1. Prove that: int(0)^(pi//2) (sinx)/(sinx +cos x) dx =(pi)/(4)

    Text Solution

    |

  2. int(0)^(a) (dx)/(x+ sqrt""(a^(2) -x^(2)))=

    Text Solution

    |

  3. The value of the integral int(0)^(pi//2) (sqrt""(cot x))/(sqrt""(cot x...

    Text Solution

    |

  4. int(0)^(pi//2) (sqrt""(sin^(3).x) dx)/(sqrt""(sin^(3) x) + sqrt""(cos^...

    Text Solution

    |

  5. The value of int(0)^(pi//2) (dx)/(1+tan^(3) x) is

    Text Solution

    |

  6. int(0)^(pi) (dx)/(1 + tan^(4)x)=

    Text Solution

    |

  7. The value of the integral int(0)^(pi//2) (phi (x))/(phi (x) + phi ((p...

    Text Solution

    |

  8. int(0)^(pi//2) (a sin x +b cos x)/(sin x+cos x) dx=

    Text Solution

    |

  9. int(0)^(oo) (xdx)/((1+x) (1+x^(2)))=

    Text Solution

    |

  10. int(0)^(pi//4) log (1+tan x) dx =?

    Text Solution

    |

  11. int(0)^(1) (log (1+x))/(1+ x^(2)) dx is equal to

    Text Solution

    |

  12. int(0)^(pi) sin^(n) x.cos^(2m+1) xdx is equal to

    Text Solution

    |

  13. int(0)^(pi//2) ((cos x-sin x))/((1+sin x cos x)) dx

    Text Solution

    |

  14. int(0)^(pi//2) (cos 2x)/((sin x +cos x)^(2)) dx=

    Text Solution

    |

  15. int(1//2)^(2) (1)/(x) cosec^(101) (x-(1)/(x))dx=

    Text Solution

    |

  16. Given that int(0)^(pi//2) sin^(4) x cos^(2) x dx= (pi)/(32), then int(...

    Text Solution

    |

  17. The value of int(0)^(pi//2) log ((4+3 sin x)/(4+3 cos x)) dx is

    Text Solution

    |

  18. int(0)^(pi//2) (dx)/(sqrt(tan x)- sqrt(cot x))=

    Text Solution

    |

  19. The value of int(0)^(pi) (2^(sin x)cos x)/(s^([sin x])).dx when [.] de...

    Text Solution

    |

  20. The value of the integral int(0)^(pi//2) sin 2x log tan x dx equals

    Text Solution

    |