Home
Class 12
MATHS
The value of the integral int(0)^(pi//2)...

The value of the integral `int_(0)^(pi//2) (sqrt""(cot x))/(sqrt""(cot x) + sqrt""(tan x))dx` is

A

`(pi)/(4)`

B

`(pi)/(2)`

C

`pi`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} \, dx, \] we can use a property of definite integrals. The property states that: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx. \] ### Step 1: Apply the property to the integral Let’s apply this property to our integral. We set \( a = \frac{\pi}{2} \), and we will find \( I \) in terms of \( I \) itself: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} \, dx. \] Using the property, we have: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cot\left(\frac{\pi}{2} - x\right)}}{\sqrt{\cot\left(\frac{\pi}{2} - x\right)} + \sqrt{\tan\left(\frac{\pi}{2} - x\right)}} \, dx. \] ### Step 2: Simplify the expressions We know that: \[ \cot\left(\frac{\pi}{2} - x\right) = \tan x \quad \text{and} \quad \tan\left(\frac{\pi}{2} - x\right) = \cot x. \] Thus, we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}} \, dx. \] ### Step 3: Combine the two integrals Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} \, dx \) 2. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}} \, dx \) Let’s add these two equations: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} + \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}} \right) dx. \] ### Step 4: Simplify the sum Notice that the denominators are the same, so we can combine the fractions: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cot x} + \sqrt{\tan x}}{\sqrt{\cot x} + \sqrt{\tan x}} \, dx = \int_{0}^{\frac{\pi}{2}} 1 \, dx. \] ### Step 5: Evaluate the integral The integral of 1 from 0 to \(\frac{\pi}{2}\) is simply: \[ \int_{0}^{\frac{\pi}{2}} 1 \, dx = \frac{\pi}{2}. \] Thus, we have: \[ 2I = \frac{\pi}{2}. \] ### Step 6: Solve for \( I \) Dividing both sides by 2 gives: \[ I = \frac{\pi}{4}. \] ### Final Answer The value of the integral is: \[ \boxed{\frac{\pi}{4}}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (3) (Multiple Choice Questions)|38 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(1)/(sqrt(tan x)-sqrt(cot x))dx=

The value of the integral int_(0)^(pi//2)log |tan x cot x |dx is

int_(0)^((pi)/(2))(sqrt(cot x))/(sqrt(tan x)+sqrt(cot x))dx=

The value of the integral int_(3)^(6)(sqrt(x))/(sqrt(9-x)+sqrt(x))dx is

The value of the integral int_(pi//6)^(pi//3) (1)/(1+sqrt(tan x))dx is

int_0^(pi//2) x(sqrt(tan x)+sqrt(cot x))dx equals

By using the properties of definite integrals, evaluate the integrals int_(0)^((pi)/(2))(sqrt(sin x))/(sqrt(sin x)+sqrt(cos x))dx

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (2) (Multiple Choice Questions)
  1. Prove that: int(0)^(pi//2) (sinx)/(sinx +cos x) dx =(pi)/(4)

    Text Solution

    |

  2. int(0)^(a) (dx)/(x+ sqrt""(a^(2) -x^(2)))=

    Text Solution

    |

  3. The value of the integral int(0)^(pi//2) (sqrt""(cot x))/(sqrt""(cot x...

    Text Solution

    |

  4. int(0)^(pi//2) (sqrt""(sin^(3).x) dx)/(sqrt""(sin^(3) x) + sqrt""(cos^...

    Text Solution

    |

  5. The value of int(0)^(pi//2) (dx)/(1+tan^(3) x) is

    Text Solution

    |

  6. int(0)^(pi) (dx)/(1 + tan^(4)x)=

    Text Solution

    |

  7. The value of the integral int(0)^(pi//2) (phi (x))/(phi (x) + phi ((p...

    Text Solution

    |

  8. int(0)^(pi//2) (a sin x +b cos x)/(sin x+cos x) dx=

    Text Solution

    |

  9. int(0)^(oo) (xdx)/((1+x) (1+x^(2)))=

    Text Solution

    |

  10. int(0)^(pi//4) log (1+tan x) dx =?

    Text Solution

    |

  11. int(0)^(1) (log (1+x))/(1+ x^(2)) dx is equal to

    Text Solution

    |

  12. int(0)^(pi) sin^(n) x.cos^(2m+1) xdx is equal to

    Text Solution

    |

  13. int(0)^(pi//2) ((cos x-sin x))/((1+sin x cos x)) dx

    Text Solution

    |

  14. int(0)^(pi//2) (cos 2x)/((sin x +cos x)^(2)) dx=

    Text Solution

    |

  15. int(1//2)^(2) (1)/(x) cosec^(101) (x-(1)/(x))dx=

    Text Solution

    |

  16. Given that int(0)^(pi//2) sin^(4) x cos^(2) x dx= (pi)/(32), then int(...

    Text Solution

    |

  17. The value of int(0)^(pi//2) log ((4+3 sin x)/(4+3 cos x)) dx is

    Text Solution

    |

  18. int(0)^(pi//2) (dx)/(sqrt(tan x)- sqrt(cot x))=

    Text Solution

    |

  19. The value of int(0)^(pi) (2^(sin x)cos x)/(s^([sin x])).dx when [.] de...

    Text Solution

    |

  20. The value of the integral int(0)^(pi//2) sin 2x log tan x dx equals

    Text Solution

    |