Home
Class 12
MATHS
int(0)^(pi//2) (sqrt""(sin^(3).x) dx)/(s...

`int_(0)^(pi//2) (sqrt""(sin^(3).x) dx)/(sqrt""(sin^(3) x) + sqrt""(cos^(3) x))`=

A

`pi//4`

B

1

C

0

D

`pi//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin^3 x}}{\sqrt{\sin^3 x} + \sqrt{\cos^3 x}} \, dx, \] we will use a property of definite integrals. ### Step 1: Define the integral Let \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin^3 x}}{\sqrt{\sin^3 x} + \sqrt{\cos^3 x}} \, dx. \] ### Step 2: Use the property of definite integrals We can use the property \[ \int_{0}^{A} f(x) \, dx = \int_{0}^{A} f(A - x) \, dx. \] For our case, we set \( A = \frac{\pi}{2} \): \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin^3\left(\frac{\pi}{2} - x\right)}}{\sqrt{\sin^3\left(\frac{\pi}{2} - x\right)} + \sqrt{\cos^3\left(\frac{\pi}{2} - x\right)}} \, dx. \] ### Step 3: Simplify the expression Using the identities \( \sin\left(\frac{\pi}{2} - x\right) = \cos x \) and \( \cos\left(\frac{\pi}{2} - x\right) = \sin x \), we can rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cos^3 x}}{\sqrt{\cos^3 x} + \sqrt{\sin^3 x}} \, dx. \] ### Step 4: Combine the two integrals Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin^3 x}}{\sqrt{\sin^3 x} + \sqrt{\cos^3 x}} \, dx \) 2. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cos^3 x}}{\sqrt{\cos^3 x} + \sqrt{\sin^3 x}} \, dx \) Adding these two integrals: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{\sqrt{\sin^3 x}}{\sqrt{\sin^3 x} + \sqrt{\cos^3 x}} + \frac{\sqrt{\cos^3 x}}{\sqrt{\cos^3 x} + \sqrt{\sin^3 x}} \right) dx. \] ### Step 5: Simplify the sum The sum simplifies to: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin^3 x} + \sqrt{\cos^3 x}}{\sqrt{\sin^3 x} + \sqrt{\cos^3 x}} \, dx = \int_{0}^{\frac{\pi}{2}} 1 \, dx. \] ### Step 6: Evaluate the integral Now, we can evaluate the integral: \[ 2I = \left[ x \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} - 0 = \frac{\pi}{2}. \] ### Step 7: Solve for \( I \) Dividing both sides by 2 gives: \[ I = \frac{\pi}{4}. \] ### Final Answer Thus, the value of the integral is \[ \boxed{\frac{\pi}{4}}. \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (3) (Multiple Choice Questions)|38 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) sqrt(cos x) sin ^(3) x" "dx=

int_(0)^(pi//2) sqrt(sin x)/(sqrt(sin x ) + sqrt( cos x)) dx =

int (dx) / (sqrt (sin ^ (3) x cos ^ (5) x)) =

int_(0)^((pi)/(2))(sqrt(sin x))/(sqrt(sin x)+sqrt(cos x))dx

int_(0)^(pi)(cos x)/(1+sqrt(sin x))dx=

int_(0) ^(pi//2) ((sin x +cos x )^(2))/sqrt(1+ sin 2x)dx =

int_(0)^(2pi)sqrt(1+"sin"x/2)dx=

Prove that : int_(0)^(pi//2) (sqrt(cos x))/(sqrt(sin x+ sqrt(cos x)))dx=(pi)/(4)

int_(0)^(2 pi)(cos x)/(sqrt(4+3sin x))dx

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (2) (Multiple Choice Questions)
  1. int(0)^(a) (dx)/(x+ sqrt""(a^(2) -x^(2)))=

    Text Solution

    |

  2. The value of the integral int(0)^(pi//2) (sqrt""(cot x))/(sqrt""(cot x...

    Text Solution

    |

  3. int(0)^(pi//2) (sqrt""(sin^(3).x) dx)/(sqrt""(sin^(3) x) + sqrt""(cos^...

    Text Solution

    |

  4. The value of int(0)^(pi//2) (dx)/(1+tan^(3) x) is

    Text Solution

    |

  5. int(0)^(pi) (dx)/(1 + tan^(4)x)=

    Text Solution

    |

  6. The value of the integral int(0)^(pi//2) (phi (x))/(phi (x) + phi ((p...

    Text Solution

    |

  7. int(0)^(pi//2) (a sin x +b cos x)/(sin x+cos x) dx=

    Text Solution

    |

  8. int(0)^(oo) (xdx)/((1+x) (1+x^(2)))=

    Text Solution

    |

  9. int(0)^(pi//4) log (1+tan x) dx =?

    Text Solution

    |

  10. int(0)^(1) (log (1+x))/(1+ x^(2)) dx is equal to

    Text Solution

    |

  11. int(0)^(pi) sin^(n) x.cos^(2m+1) xdx is equal to

    Text Solution

    |

  12. int(0)^(pi//2) ((cos x-sin x))/((1+sin x cos x)) dx

    Text Solution

    |

  13. int(0)^(pi//2) (cos 2x)/((sin x +cos x)^(2)) dx=

    Text Solution

    |

  14. int(1//2)^(2) (1)/(x) cosec^(101) (x-(1)/(x))dx=

    Text Solution

    |

  15. Given that int(0)^(pi//2) sin^(4) x cos^(2) x dx= (pi)/(32), then int(...

    Text Solution

    |

  16. The value of int(0)^(pi//2) log ((4+3 sin x)/(4+3 cos x)) dx is

    Text Solution

    |

  17. int(0)^(pi//2) (dx)/(sqrt(tan x)- sqrt(cot x))=

    Text Solution

    |

  18. The value of int(0)^(pi) (2^(sin x)cos x)/(s^([sin x])).dx when [.] de...

    Text Solution

    |

  19. The value of the integral int(0)^(pi//2) sin 2x log tan x dx equals

    Text Solution

    |

  20. int(0)^(pi) e^(cos^(2)x) cos^(3) (2n+1) x dx, (n in I)=

    Text Solution

    |