Home
Class 12
MATHS
The value of int(0)^(pi//2) (dx)/(1+tan^...

The value of `int_(0)^(pi//2) (dx)/(1+tan^(3) x)` is

A

0

B

1

C

`(pi)/(2)`

D

`(pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + \tan^3 x} \), we can use a symmetry property of definite integrals. Here are the steps: ### Step 1: Define the integral Let \[ I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + \tan^3 x} \] ### Step 2: Use the substitution \( x = \frac{\pi}{2} - t \) Using the substitution \( x = \frac{\pi}{2} - t \), we have \( dx = -dt \). The limits change as follows: - When \( x = 0 \), \( t = \frac{\pi}{2} \) - When \( x = \frac{\pi}{2} \), \( t = 0 \) Thus, the integral becomes: \[ I = \int_{\frac{\pi}{2}}^{0} \frac{-dt}{1 + \tan^3\left(\frac{\pi}{2} - t\right)} \] Using the identity \( \tan\left(\frac{\pi}{2} - t\right) = \cot t \), we have: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{dt}{1 + \cot^3 t} \] ### Step 3: Rewrite \( \cot^3 t \) Recall that \( \cot t = \frac{1}{\tan t} \), so: \[ \cot^3 t = \frac{1}{\tan^3 t} \] Thus, the integral becomes: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{dt}{1 + \frac{1}{\tan^3 t}} = \int_{0}^{\frac{\pi}{2}} \frac{\tan^3 t}{\tan^3 t + 1} dt \] ### Step 4: Combine the two expressions for \( I \) Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + \tan^3 x} \) 2. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\tan^3 x}{\tan^3 x + 1} dx \) Adding these two equations gives: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{1}{1 + \tan^3 x} + \frac{\tan^3 x}{\tan^3 x + 1} \right) dx \] ### Step 5: Simplify the integrand The integrand simplifies as follows: \[ \frac{1}{1 + \tan^3 x} + \frac{\tan^3 x}{\tan^3 x + 1} = \frac{1 + \tan^3 x}{1 + \tan^3 x} = 1 \] Thus, we have: \[ 2I = \int_{0}^{\frac{\pi}{2}} 1 \, dx = \left[ x \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} \] ### Step 6: Solve for \( I \) Dividing both sides by 2 gives: \[ I = \frac{\pi}{4} \] ### Final Answer The value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + \tan^3 x} = \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (3) (Multiple Choice Questions)|38 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(pi//2) (1)/(1+tan^(3)x)dx is

The value of int_(0)^( pi/2)(dx)/(1+tan^(3)x)(i)0(ii)1(iii(pi)/(2) (iv) (pi)/(4)

int_(0)^(pi//2)(1)/(1+tan^(3)x)dx=

int_(0)^( pi/2)(dx)/(1+tan^(5)x)

(3 pi)/(2) The value of int_(0)^((3 pi)/(2))(|tan^(-1)tan x|-|sin^(-1)sin x|)/(|tan^(-1)tan x|+|sin^(-1)sin x|)dx is equal to

The value of int_(0) ^(2pi) cos ^(-1) ((1- tan ^(2) ""(x)/(2 ))/(1+ tan ^(2)""(x)/(2))) dx is:

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (2) (Multiple Choice Questions)
  1. The value of the integral int(0)^(pi//2) (sqrt""(cot x))/(sqrt""(cot x...

    Text Solution

    |

  2. int(0)^(pi//2) (sqrt""(sin^(3).x) dx)/(sqrt""(sin^(3) x) + sqrt""(cos^...

    Text Solution

    |

  3. The value of int(0)^(pi//2) (dx)/(1+tan^(3) x) is

    Text Solution

    |

  4. int(0)^(pi) (dx)/(1 + tan^(4)x)=

    Text Solution

    |

  5. The value of the integral int(0)^(pi//2) (phi (x))/(phi (x) + phi ((p...

    Text Solution

    |

  6. int(0)^(pi//2) (a sin x +b cos x)/(sin x+cos x) dx=

    Text Solution

    |

  7. int(0)^(oo) (xdx)/((1+x) (1+x^(2)))=

    Text Solution

    |

  8. int(0)^(pi//4) log (1+tan x) dx =?

    Text Solution

    |

  9. int(0)^(1) (log (1+x))/(1+ x^(2)) dx is equal to

    Text Solution

    |

  10. int(0)^(pi) sin^(n) x.cos^(2m+1) xdx is equal to

    Text Solution

    |

  11. int(0)^(pi//2) ((cos x-sin x))/((1+sin x cos x)) dx

    Text Solution

    |

  12. int(0)^(pi//2) (cos 2x)/((sin x +cos x)^(2)) dx=

    Text Solution

    |

  13. int(1//2)^(2) (1)/(x) cosec^(101) (x-(1)/(x))dx=

    Text Solution

    |

  14. Given that int(0)^(pi//2) sin^(4) x cos^(2) x dx= (pi)/(32), then int(...

    Text Solution

    |

  15. The value of int(0)^(pi//2) log ((4+3 sin x)/(4+3 cos x)) dx is

    Text Solution

    |

  16. int(0)^(pi//2) (dx)/(sqrt(tan x)- sqrt(cot x))=

    Text Solution

    |

  17. The value of int(0)^(pi) (2^(sin x)cos x)/(s^([sin x])).dx when [.] de...

    Text Solution

    |

  18. The value of the integral int(0)^(pi//2) sin 2x log tan x dx equals

    Text Solution

    |

  19. int(0)^(pi) e^(cos^(2)x) cos^(3) (2n+1) x dx, (n in I)=

    Text Solution

    |

  20. int(0)^(pi) (x sin x)/(1+ cos^(2) x)dx=

    Text Solution

    |