Home
Class 12
MATHS
int(0)^(pi) (dx)/(1 + tan^(4)x)=...

`int_(0)^(pi) (dx)/(1 + tan^(4)x)`=

A

0

B

`pi//6`

C

`pi//4`

D

`pi//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} \frac{dx}{1 + \tan^4 x} \), we can follow these steps: ### Step 1: Use the property of definite integrals We will use the property that states: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] In our case, we have \( a = \pi \). Thus, we can write: \[ I = \int_{0}^{\pi} \frac{dx}{1 + \tan^4 x} = \int_{0}^{\pi} \frac{dx}{1 + \tan^4(\pi - x)} \] Since \( \tan(\pi - x) = -\tan(x) \), we have: \[ \tan^4(\pi - x) = \tan^4(x) \] So, the integral remains the same: \[ I = \int_{0}^{\pi} \frac{dx}{1 + \tan^4 x} \] ### Step 2: Split the integral Now, we can express \( I \) as: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + \tan^4 x} + \int_{\frac{\pi}{2}}^{\pi} \frac{dx}{1 + \tan^4 x} \] Using the substitution \( x = \pi - u \) in the second integral, we have: \[ dx = -du \quad \text{and when } x = \frac{\pi}{2}, u = \frac{\pi}{2} \text{ and when } x = \pi, u = 0 \] Thus, the second integral becomes: \[ \int_{\frac{\pi}{2}}^{\pi} \frac{dx}{1 + \tan^4 x} = \int_{0}^{\frac{\pi}{2}} \frac{-du}{1 + \tan^4(\pi - u)} = \int_{0}^{\frac{\pi}{2}} \frac{du}{1 + \tan^4 u} \] So, we can write: \[ I = 2 \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + \tan^4 x} \] ### Step 3: Change of variables Next, we can use the substitution \( \tan x = t \), which gives \( dx = \frac{dt}{1 + t^2} \). The limits change from \( x = 0 \) to \( x = \frac{\pi}{2} \) which corresponds to \( t = 0 \) to \( t = \infty \): \[ I = 2 \int_{0}^{\infty} \frac{1}{1 + t^4} \cdot \frac{dt}{1 + t^2} \] ### Step 4: Simplifying the integral Now, we can simplify the integral: \[ I = 2 \int_{0}^{\infty} \frac{dt}{(1 + t^4)(1 + t^2)} \] This integral can be evaluated using partial fractions or known integral results. ### Step 5: Final evaluation After evaluating the integral, we find: \[ I = \frac{\pi}{2} \] Thus, the final result is: \[ \int_{0}^{\pi} \frac{dx}{1 + \tan^4 x} = \frac{\pi}{2} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (3) (Multiple Choice Questions)|38 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi/2)(dx)/(1+tan^(5)x)

The value of int_(0)^(pi//2)(dx)/(1+tan^(3)x) is

The value of int_(0)^((pi)/(2))(dx)/(1+tan^(3)x) is (a) 0(b)1(c)(pi)/(2)(d)pi

int_(0)^(pi//2)(1)/(1+tan^(3)x)dx=

Statement-1: int_(0)^(pi//2) (1)/(1+tan^(3)x)dx=(pi)/(4) Statement-2: int_(0)^(a) f(x)dx=int_(0)^(a) f(a+x)dx

The value of int_(0)^( pi/2)(dx)/(1+tan^(3)x)(i)0(ii)1(iii(pi)/(2) (iv) (pi)/(4)

Find the value of int_(0)^(2pi)1/(1+tan^(4)x)dx

Evaluate: int_(0)^( pi)(dx)/(1+2^(tan x))

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (2) (Multiple Choice Questions)
  1. int(0)^(pi//2) (sqrt""(sin^(3).x) dx)/(sqrt""(sin^(3) x) + sqrt""(cos^...

    Text Solution

    |

  2. The value of int(0)^(pi//2) (dx)/(1+tan^(3) x) is

    Text Solution

    |

  3. int(0)^(pi) (dx)/(1 + tan^(4)x)=

    Text Solution

    |

  4. The value of the integral int(0)^(pi//2) (phi (x))/(phi (x) + phi ((p...

    Text Solution

    |

  5. int(0)^(pi//2) (a sin x +b cos x)/(sin x+cos x) dx=

    Text Solution

    |

  6. int(0)^(oo) (xdx)/((1+x) (1+x^(2)))=

    Text Solution

    |

  7. int(0)^(pi//4) log (1+tan x) dx =?

    Text Solution

    |

  8. int(0)^(1) (log (1+x))/(1+ x^(2)) dx is equal to

    Text Solution

    |

  9. int(0)^(pi) sin^(n) x.cos^(2m+1) xdx is equal to

    Text Solution

    |

  10. int(0)^(pi//2) ((cos x-sin x))/((1+sin x cos x)) dx

    Text Solution

    |

  11. int(0)^(pi//2) (cos 2x)/((sin x +cos x)^(2)) dx=

    Text Solution

    |

  12. int(1//2)^(2) (1)/(x) cosec^(101) (x-(1)/(x))dx=

    Text Solution

    |

  13. Given that int(0)^(pi//2) sin^(4) x cos^(2) x dx= (pi)/(32), then int(...

    Text Solution

    |

  14. The value of int(0)^(pi//2) log ((4+3 sin x)/(4+3 cos x)) dx is

    Text Solution

    |

  15. int(0)^(pi//2) (dx)/(sqrt(tan x)- sqrt(cot x))=

    Text Solution

    |

  16. The value of int(0)^(pi) (2^(sin x)cos x)/(s^([sin x])).dx when [.] de...

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin 2x log tan x dx equals

    Text Solution

    |

  18. int(0)^(pi) e^(cos^(2)x) cos^(3) (2n+1) x dx, (n in I)=

    Text Solution

    |

  19. int(0)^(pi) (x sin x)/(1+ cos^(2) x)dx=

    Text Solution

    |

  20. Prove that :int(0)^(pi//2) (x sin x cos x)/(sin^(4) x+ cos^(4)x)dx =(p...

    Text Solution

    |