Home
Class 12
MATHS
The value of the integral int(0)^(pi//2)...

The value of the integral `int_(0)^(pi//2) (phi (x))/(phi (x) + phi ((pi)/(2) -x)) dx` is

A

`(pi)/(4)`

B

`(pi)/(2)`

C

`pi`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\phi(x)}{\phi(x) + \phi\left(\frac{\pi}{2} - x\right)} \, dx, \] we can use a property of definite integrals. This property states that: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx. \] ### Step 1: Apply the property to the integral Let’s define \( I \) as follows: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\phi(x)}{\phi(x) + \phi\left(\frac{\pi}{2} - x\right)} \, dx. \] Now, we will apply the property: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\phi\left(\frac{\pi}{2} - x\right)}{\phi\left(\frac{\pi}{2} - x\right) + \phi(x)} \, dx. \] ### Step 2: Rewrite the integral Now we can rewrite this integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\phi\left(\frac{\pi}{2} - x\right)}{\phi\left(\frac{\pi}{2} - x\right) + \phi(x)} \, dx. \] ### Step 3: Add both expressions for \( I \) Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\phi(x)}{\phi(x) + \phi\left(\frac{\pi}{2} - x\right)} \, dx \) 2. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\phi\left(\frac{\pi}{2} - x\right)}{\phi\left(\frac{\pi}{2} - x\right) + \phi(x)} \, dx \) Adding these two equations gives: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{\phi(x)}{\phi(x) + \phi\left(\frac{\pi}{2} - x\right)} + \frac{\phi\left(\frac{\pi}{2} - x\right)}{\phi\left(\frac{\pi}{2} - x\right) + \phi(x)} \right) \, dx. \] ### Step 4: Simplify the integrand The integrand simplifies as follows: \[ \frac{\phi(x)}{\phi(x) + \phi\left(\frac{\pi}{2} - x\right)} + \frac{\phi\left(\frac{\pi}{2} - x\right)}{\phi\left(\frac{\pi}{2} - x\right) + \phi(x)} = 1. \] Thus, we have: \[ 2I = \int_{0}^{\frac{\pi}{2}} 1 \, dx. \] ### Step 5: Evaluate the integral Now, we can evaluate the integral: \[ 2I = \left[ x \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} - 0 = \frac{\pi}{2}. \] ### Step 6: Solve for \( I \) Dividing both sides by 2 gives: \[ I = \frac{\pi}{4}. \] ### Final Answer Therefore, the value of the integral is: \[ \boxed{\frac{\pi}{4}}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (3) (Multiple Choice Questions)|38 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :

The value of the integral int_(0)^(pi) | sin 2x| dx is

The value of the integral int_(0)^(pi//2) sin^(6) x dx , is

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

Evaluate the integrals int_(0)^((pi)/(2))sqrt(sin phi)cos^(5)phi d phi

The value of the integral int_(-pi//2)^(pi//2) (x^(2)+ln'(pi+x)/(x-a)) cosx dx is

The value of int_(pi//4)^(3pi//4)(phi)/(1+sinphi)d phi is

int_(0)^((pi)/(2))sqrt(sin phi cos^(5)phidphi)

int_(0)^((pi)/(2))sqrt(sin phi)cos^(5)phi d phi

int_(a)^(b)f(x)dx=phi(b)-phi(a)