Home
Class 12
MATHS
int(0)^(pi//2) (a sin x +b cos x)/(sin x...

`int_(0)^(pi//2) (a sin x +b cos x)/(sin x+cos x) dx`=

A

0

B

`(a+b) (pi)/(2)`

C

`a+b`

D

`(a+b) (pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{a \sin x + b \cos x}{\sin x + \cos x} \, dx, \] we will use a property of definite integrals and symmetry. ### Step 1: Define the integral Let \[ I = \int_{0}^{\frac{\pi}{2}} \frac{a \sin x + b \cos x}{\sin x + \cos x} \, dx. \] ### Step 2: Use the property of definite integrals We will apply the property \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx. \] In our case, we have: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{a \sin\left(\frac{\pi}{2} - x\right) + b \cos\left(\frac{\pi}{2} - x\right)}{\sin\left(\frac{\pi}{2} - x\right) + \cos\left(\frac{\pi}{2} - x\right)} \, dx. \] ### Step 3: Simplify using trigonometric identities Using the identities \( \sin\left(\frac{\pi}{2} - x\right) = \cos x \) and \( \cos\left(\frac{\pi}{2} - x\right) = \sin x \), we can rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{a \cos x + b \sin x}{\cos x + \sin x} \, dx. \] ### Step 4: Combine the two expressions for \( I \) Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\frac{\pi}{2}} \frac{a \sin x + b \cos x}{\sin x + \cos x} \, dx \) (Equation 1) 2. \( I = \int_{0}^{\frac{\pi}{2}} \frac{a \cos x + b \sin x}{\sin x + \cos x} \, dx \) (Equation 2) Adding these two equations, we get: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{(a \sin x + b \cos x) + (a \cos x + b \sin x)}{\sin x + \cos x} \right) \, dx. \] ### Step 5: Simplify the numerator The numerator simplifies to: \[ (a \sin x + b \cos x) + (a \cos x + b \sin x) = (a + b)(\sin x + \cos x). \] Thus, we have: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{(a + b)(\sin x + \cos x)}{\sin x + \cos x} \, dx. \] ### Step 6: Cancel the common terms The \(\sin x + \cos x\) terms cancel out: \[ 2I = (a + b) \int_{0}^{\frac{\pi}{2}} 1 \, dx. \] ### Step 7: Evaluate the integral The integral of 1 from 0 to \(\frac{\pi}{2}\) is: \[ \int_{0}^{\frac{\pi}{2}} 1 \, dx = \frac{\pi}{2}. \] ### Step 8: Solve for \( I \) Substituting this back, we get: \[ 2I = (a + b) \cdot \frac{\pi}{2}. \] Dividing both sides by 2 gives: \[ I = \frac{(a + b) \cdot \frac{\pi}{2}}{2} = \frac{(a + b) \cdot \pi}{4}. \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{(a + b) \pi}{4}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (3) (Multiple Choice Questions)|38 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(sin x - cos x)/(1-sin x cos x)dx=

int_(0)^(pi//2) ""(sin x - cos x)/( 1-sin x * cos x) dx is equal to

int_(0)^(pi//2) x sin x cos x dx

int_(0)^( pi/2)(sin x-cos x)/(1+sin x*cos x)*dx

Prove that : int_(0)^(pi//2) (x sin x cos x)/(sin^(4) x+ cos^(4)x)dx =(pi)/(16)

int_(0)^(pi//2) x sin cos x dx=?

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (2) (Multiple Choice Questions)
  1. int(0)^(pi) (dx)/(1 + tan^(4)x)=

    Text Solution

    |

  2. The value of the integral int(0)^(pi//2) (phi (x))/(phi (x) + phi ((p...

    Text Solution

    |

  3. int(0)^(pi//2) (a sin x +b cos x)/(sin x+cos x) dx=

    Text Solution

    |

  4. int(0)^(oo) (xdx)/((1+x) (1+x^(2)))=

    Text Solution

    |

  5. int(0)^(pi//4) log (1+tan x) dx =?

    Text Solution

    |

  6. int(0)^(1) (log (1+x))/(1+ x^(2)) dx is equal to

    Text Solution

    |

  7. int(0)^(pi) sin^(n) x.cos^(2m+1) xdx is equal to

    Text Solution

    |

  8. int(0)^(pi//2) ((cos x-sin x))/((1+sin x cos x)) dx

    Text Solution

    |

  9. int(0)^(pi//2) (cos 2x)/((sin x +cos x)^(2)) dx=

    Text Solution

    |

  10. int(1//2)^(2) (1)/(x) cosec^(101) (x-(1)/(x))dx=

    Text Solution

    |

  11. Given that int(0)^(pi//2) sin^(4) x cos^(2) x dx= (pi)/(32), then int(...

    Text Solution

    |

  12. The value of int(0)^(pi//2) log ((4+3 sin x)/(4+3 cos x)) dx is

    Text Solution

    |

  13. int(0)^(pi//2) (dx)/(sqrt(tan x)- sqrt(cot x))=

    Text Solution

    |

  14. The value of int(0)^(pi) (2^(sin x)cos x)/(s^([sin x])).dx when [.] de...

    Text Solution

    |

  15. The value of the integral int(0)^(pi//2) sin 2x log tan x dx equals

    Text Solution

    |

  16. int(0)^(pi) e^(cos^(2)x) cos^(3) (2n+1) x dx, (n in I)=

    Text Solution

    |

  17. int(0)^(pi) (x sin x)/(1+ cos^(2) x)dx=

    Text Solution

    |

  18. Prove that :int(0)^(pi//2) (x sin x cos x)/(sin^(4) x+ cos^(4)x)dx =(p...

    Text Solution

    |

  19. int(pi)^(5pi//4) (sin 2x)/(cos^(4) x +sin^(4)x) dx=

    Text Solution

    |

  20. Prove that :int(0)^(pi) (x)/(a^(2) cos^(2) x+b^(2) sin^(2) x)dx =(pi^(...

    Text Solution

    |