Home
Class 12
MATHS
int(0)^(oo) (xdx)/((1+x) (1+x^(2)))=...

`int_(0)^(oo) (xdx)/((1+x) (1+x^(2)))=`

A

`(pi)/(4)`

B

`(pi)/(2)`

C

`pi`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\infty} \frac{x \, dx}{(1+x)(1+x^2)}, \] we will use the substitution \( x = \tan(\theta) \). ### Step 1: Substitution Let \( x = \tan(\theta) \). Then, the differential \( dx \) is given by: \[ dx = \sec^2(\theta) \, d\theta. \] ### Step 2: Change of Limits Now, we change the limits of integration: - When \( x = 0 \), \( \theta = \tan^{-1}(0) = 0 \). - When \( x = \infty \), \( \theta = \tan^{-1}(\infty) = \frac{\pi}{2} \). ### Step 3: Substitute into the Integral Now we substitute \( x \) and \( dx \) into the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\tan(\theta) \sec^2(\theta) \, d\theta}{(1 + \tan(\theta))(1 + \tan^2(\theta))}. \] Using the identity \( 1 + \tan^2(\theta) = \sec^2(\theta) \), we can simplify the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\tan(\theta) \sec^2(\theta) \, d\theta}{(1 + \tan(\theta)) \sec^2(\theta)} = \int_{0}^{\frac{\pi}{2}} \frac{\tan(\theta)}{1 + \tan(\theta)} \, d\theta. \] ### Step 4: Simplify the Integral We can rewrite \( \tan(\theta) \) as \( \frac{\sin(\theta)}{\cos(\theta)} \): \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\frac{\sin(\theta)}{\cos(\theta)}}{1 + \frac{\sin(\theta)}{\cos(\theta)}} \, d\theta = \int_{0}^{\frac{\pi}{2}} \frac{\sin(\theta)}{\sin(\theta) + \cos(\theta)} \, d\theta. \] ### Step 5: Use Symmetry Now, we can use the property of integrals. We know that: \[ \int_{0}^{\frac{\pi}{2}} \frac{\sin(\theta)}{\sin(\theta) + \cos(\theta)} \, d\theta + \int_{0}^{\frac{\pi}{2}} \frac{\cos(\theta)}{\sin(\theta) + \cos(\theta)} \, d\theta = \int_{0}^{\frac{\pi}{2}} 1 \, d\theta = \frac{\pi}{2}. \] Let \( J = \int_{0}^{\frac{\pi}{2}} \frac{\cos(\theta)}{\sin(\theta) + \cos(\theta)} \, d\theta \). Then we have: \[ I + J = \frac{\pi}{2}. \] ### Step 6: Evaluate \( J \) By substituting \( \theta = \frac{\pi}{2} - u \): \[ J = \int_{0}^{\frac{\pi}{2}} \frac{\sin(u)}{\sin(u) + \cos(u)} \, du = I. \] Thus, we have: \[ I + I = \frac{\pi}{2} \implies 2I = \frac{\pi}{2} \implies I = \frac{\pi}{4}. \] ### Final Result Therefore, the value of the integral is: \[ \int_{0}^{\infty} \frac{x \, dx}{(1+x)(1+x^2)} = \frac{\pi}{4}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (3) (Multiple Choice Questions)|38 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(oo)(x)/((1+x)(1+x^(2)))dx

Prove that: int_(0)^(oo) (x)/((1+x)(1+x)^(2))dx =(pi)/(4)

int_(0)^(oo)(x)/((1+x)(1+x^(2))) dx equals to :

The value of int_(0)^(oo)(x)/((1+x)(x^(2)+1))dx is

int_(0)^(oo)(dx)/((1+x^(2))^(4))=

int _(0)^(1) (xdx)/([x + sqrt(1-x^(2))]sqrt(1-x^(2))) is equal to

int(xdx)/((x-1)(x^(2)+4))

The value of definite integral int_(0)^(oo)In(x+(1)/(x))(dx)/(1+x^(2)) is equal to

int_(0)^(oo)(tan^(-1)x)/(1+x^(2))dx

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (2) (Multiple Choice Questions)
  1. The value of the integral int(0)^(pi//2) (phi (x))/(phi (x) + phi ((p...

    Text Solution

    |

  2. int(0)^(pi//2) (a sin x +b cos x)/(sin x+cos x) dx=

    Text Solution

    |

  3. int(0)^(oo) (xdx)/((1+x) (1+x^(2)))=

    Text Solution

    |

  4. int(0)^(pi//4) log (1+tan x) dx =?

    Text Solution

    |

  5. int(0)^(1) (log (1+x))/(1+ x^(2)) dx is equal to

    Text Solution

    |

  6. int(0)^(pi) sin^(n) x.cos^(2m+1) xdx is equal to

    Text Solution

    |

  7. int(0)^(pi//2) ((cos x-sin x))/((1+sin x cos x)) dx

    Text Solution

    |

  8. int(0)^(pi//2) (cos 2x)/((sin x +cos x)^(2)) dx=

    Text Solution

    |

  9. int(1//2)^(2) (1)/(x) cosec^(101) (x-(1)/(x))dx=

    Text Solution

    |

  10. Given that int(0)^(pi//2) sin^(4) x cos^(2) x dx= (pi)/(32), then int(...

    Text Solution

    |

  11. The value of int(0)^(pi//2) log ((4+3 sin x)/(4+3 cos x)) dx is

    Text Solution

    |

  12. int(0)^(pi//2) (dx)/(sqrt(tan x)- sqrt(cot x))=

    Text Solution

    |

  13. The value of int(0)^(pi) (2^(sin x)cos x)/(s^([sin x])).dx when [.] de...

    Text Solution

    |

  14. The value of the integral int(0)^(pi//2) sin 2x log tan x dx equals

    Text Solution

    |

  15. int(0)^(pi) e^(cos^(2)x) cos^(3) (2n+1) x dx, (n in I)=

    Text Solution

    |

  16. int(0)^(pi) (x sin x)/(1+ cos^(2) x)dx=

    Text Solution

    |

  17. Prove that :int(0)^(pi//2) (x sin x cos x)/(sin^(4) x+ cos^(4)x)dx =(p...

    Text Solution

    |

  18. int(pi)^(5pi//4) (sin 2x)/(cos^(4) x +sin^(4)x) dx=

    Text Solution

    |

  19. Prove that :int(0)^(pi) (x)/(a^(2) cos^(2) x+b^(2) sin^(2) x)dx =(pi^(...

    Text Solution

    |

  20. int(0)^(pi/2)logsinx=-(pi/2)log2 int(0)^(pi) x log sin x dx=

    Text Solution

    |