Home
Class 12
MATHS
int(0)^(1) (log (1+x))/(1+ x^(2)) dx is ...

`int_(0)^(1) (log (1+x))/(1+ x^(2)) dx` is equal to

A

`(pi)/(8)`

B

`(pi)/(8) log 2`

C

log 2

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{1} \frac{\log(1+x)}{1+x^2} \, dx, \] we can use a substitution and properties of definite integrals. Let's go through the steps: ### Step 1: Substitution We will use the substitution \( x = \tan(\theta) \). Then, we have: \[ dx = \sec^2(\theta) \, d\theta. \] The limits change as follows: - When \( x = 0 \), \( \theta = 0 \). - When \( x = 1 \), \( \theta = \frac{\pi}{4} \). ### Step 2: Change the integral Now, we can rewrite the integral in terms of \( \theta \): \[ I = \int_{0}^{\frac{\pi}{4}} \frac{\log(1+\tan(\theta))}{1+\tan^2(\theta)} \sec^2(\theta) \, d\theta. \] Using the identity \( 1 + \tan^2(\theta) = \sec^2(\theta) \), we simplify: \[ I = \int_{0}^{\frac{\pi}{4}} \log(1+\tan(\theta)) \, d\theta. \] ### Step 3: Define a new integral Let’s denote this integral as: \[ I = \int_{0}^{\frac{\pi}{4}} \log(1+\tan(\theta)) \, d\theta. \] ### Step 4: Use symmetry property We can use the property of integrals that states: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a-x) \, dx. \] In our case, we can set \( a = \frac{\pi}{4} \) and \( f(x) = \log(1+\tan(x)) \). Then we have: \[ I = \int_{0}^{\frac{\pi}{4}} \log(1+\tan(\frac{\pi}{4} - x)) \, dx. \] Using the identity \( \tan(\frac{\pi}{4} - x) = \frac{1 - \tan(x)}{1 + \tan(x)} \): \[ I = \int_{0}^{\frac{\pi}{4}} \log\left(1 + \frac{1 - \tan(x)}{1 + \tan(x)}\right) \, dx. \] ### Step 5: Simplify the logarithm We simplify the logarithm: \[ 1 + \frac{1 - \tan(x)}{1 + \tan(x)} = \frac{(1 + \tan(x)) + (1 - \tan(x))}{1 + \tan(x)} = \frac{2}{1 + \tan(x)}. \] Thus, \[ I = \int_{0}^{\frac{\pi}{4}} \log\left(\frac{2}{1+\tan(x)}\right) \, dx. \] ### Step 6: Break the logarithm Using the property of logarithms: \[ I = \int_{0}^{\frac{\pi}{4}} \log(2) \, dx - \int_{0}^{\frac{\pi}{4}} \log(1+\tan(x)) \, dx. \] The first integral evaluates to: \[ \log(2) \cdot \frac{\pi}{4}. \] ### Step 7: Combine the results Now we have: \[ I = \frac{\pi}{4} \log(2) - I. \] Adding \( I \) to both sides gives: \[ 2I = \frac{\pi}{4} \log(2). \] ### Step 8: Solve for \( I \) Thus, \[ I = \frac{\pi}{8} \log(2). \] ### Final Result The value of the integral is: \[ \int_{0}^{1} \frac{\log(1+x)}{1+x^2} \, dx = \frac{\pi}{8} \log(2). \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (3) (Multiple Choice Questions)|38 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)(log(1+x))/(1+x)dx

int_(0)^(1)x log (1+2 x)dx

int_(0)^(1)(log(1-x))/(x)dx

int_(0)^(1)(log x)dx

int_(0)^(1) log (1/x-1) dx =

int_(0)^(1)(log x)/(sqrt(1-x^(2)))dx

int_(0)^(1)log(3+x)dx

" 8."int_(0)^(oo)(log x)/(1+x^(2))dx

int_(0)^(1) (x^(2))/(1+x^(2))dx is equal to

int(1)/(x(1+log x)^(2))dx is equal to

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (2) (Multiple Choice Questions)
  1. int(0)^(oo) (xdx)/((1+x) (1+x^(2)))=

    Text Solution

    |

  2. int(0)^(pi//4) log (1+tan x) dx =?

    Text Solution

    |

  3. int(0)^(1) (log (1+x))/(1+ x^(2)) dx is equal to

    Text Solution

    |

  4. int(0)^(pi) sin^(n) x.cos^(2m+1) xdx is equal to

    Text Solution

    |

  5. int(0)^(pi//2) ((cos x-sin x))/((1+sin x cos x)) dx

    Text Solution

    |

  6. int(0)^(pi//2) (cos 2x)/((sin x +cos x)^(2)) dx=

    Text Solution

    |

  7. int(1//2)^(2) (1)/(x) cosec^(101) (x-(1)/(x))dx=

    Text Solution

    |

  8. Given that int(0)^(pi//2) sin^(4) x cos^(2) x dx= (pi)/(32), then int(...

    Text Solution

    |

  9. The value of int(0)^(pi//2) log ((4+3 sin x)/(4+3 cos x)) dx is

    Text Solution

    |

  10. int(0)^(pi//2) (dx)/(sqrt(tan x)- sqrt(cot x))=

    Text Solution

    |

  11. The value of int(0)^(pi) (2^(sin x)cos x)/(s^([sin x])).dx when [.] de...

    Text Solution

    |

  12. The value of the integral int(0)^(pi//2) sin 2x log tan x dx equals

    Text Solution

    |

  13. int(0)^(pi) e^(cos^(2)x) cos^(3) (2n+1) x dx, (n in I)=

    Text Solution

    |

  14. int(0)^(pi) (x sin x)/(1+ cos^(2) x)dx=

    Text Solution

    |

  15. Prove that :int(0)^(pi//2) (x sin x cos x)/(sin^(4) x+ cos^(4)x)dx =(p...

    Text Solution

    |

  16. int(pi)^(5pi//4) (sin 2x)/(cos^(4) x +sin^(4)x) dx=

    Text Solution

    |

  17. Prove that :int(0)^(pi) (x)/(a^(2) cos^(2) x+b^(2) sin^(2) x)dx =(pi^(...

    Text Solution

    |

  18. int(0)^(pi/2)logsinx=-(pi/2)log2 int(0)^(pi) x log sin x dx=

    Text Solution

    |

  19. If I(1)= int(0)^(pi) x f {sin^(3) x +cos^(2)x} dx and I(2)= pi int(0)^...

    Text Solution

    |

  20. int(0)^(pi) x f (sin x)dx=

    Text Solution

    |