Home
Class 12
MATHS
int(0)^(pi) sin^(n) x.cos^(2m+1) xdx is ...

`int_(0)^(pi) sin^(n) x.cos^(2m+1) xdx` is equal to

A

0

B

`int_(0)^(pi) cos^(2m-1) xdx`

C

`((2m+1)!)/(n!)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} \sin^n x \cos^{2m+1} x \, dx \), we can use a symmetry property of definite integrals. Here’s a step-by-step solution: ### Step 1: Define the integral Let \[ I = \int_{0}^{\pi} \sin^n x \cos^{2m+1} x \, dx \] ### Step 2: Use the property of definite integrals We can use the property of integrals that states: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] In our case, we set \( a = \pi \). Thus, we have: \[ I = \int_{0}^{\pi} \sin^n(\pi - x) \cos^{2m+1}(\pi - x) \, dx \] ### Step 3: Simplify the integrand Using the identities \( \sin(\pi - x) = \sin x \) and \( \cos(\pi - x) = -\cos x \), we can rewrite the integral: \[ I = \int_{0}^{\pi} \sin^n x \cdot (-\cos(2m+1)x) \, dx \] This simplifies to: \[ I = -\int_{0}^{\pi} \sin^n x \cos^{2m+1} x \, dx \] ### Step 4: Relate the two integrals Now we have: \[ I = -I \] Adding \( I \) to both sides gives: \[ 2I = 0 \] ### Step 5: Solve for \( I \) Dividing both sides by 2 yields: \[ I = 0 \] ### Conclusion Thus, the value of the integral is: \[ \int_{0}^{\pi} \sin^n x \cos^{2m+1} x \, dx = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (3) (Multiple Choice Questions)|38 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi) sin^(4) x cos^(2)xdx =

int_(0)^( pi)sin^(2m)x cos^(2m+1)xdx=0

int_(0)^(2 pi)sin^(3)x cos^(2)xdx

int_(0)^( pi)x sin x cos^(2)xdx

int_(0)^( pi/2)sin^(8)x cos^(2)xdx=

"int_(0)^( pi)x sin^(2)xdx

int_(0)^( pi/2)sin^(6)x cos^(2)xdx

int_(0)^( pi/2)sin^(3)x*cos^(2)xdx

int_ (0) ^ (pi) sin ^ (2) x cos ^ (3) xdx

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (2) (Multiple Choice Questions)
  1. int(0)^(pi//4) log (1+tan x) dx =?

    Text Solution

    |

  2. int(0)^(1) (log (1+x))/(1+ x^(2)) dx is equal to

    Text Solution

    |

  3. int(0)^(pi) sin^(n) x.cos^(2m+1) xdx is equal to

    Text Solution

    |

  4. int(0)^(pi//2) ((cos x-sin x))/((1+sin x cos x)) dx

    Text Solution

    |

  5. int(0)^(pi//2) (cos 2x)/((sin x +cos x)^(2)) dx=

    Text Solution

    |

  6. int(1//2)^(2) (1)/(x) cosec^(101) (x-(1)/(x))dx=

    Text Solution

    |

  7. Given that int(0)^(pi//2) sin^(4) x cos^(2) x dx= (pi)/(32), then int(...

    Text Solution

    |

  8. The value of int(0)^(pi//2) log ((4+3 sin x)/(4+3 cos x)) dx is

    Text Solution

    |

  9. int(0)^(pi//2) (dx)/(sqrt(tan x)- sqrt(cot x))=

    Text Solution

    |

  10. The value of int(0)^(pi) (2^(sin x)cos x)/(s^([sin x])).dx when [.] de...

    Text Solution

    |

  11. The value of the integral int(0)^(pi//2) sin 2x log tan x dx equals

    Text Solution

    |

  12. int(0)^(pi) e^(cos^(2)x) cos^(3) (2n+1) x dx, (n in I)=

    Text Solution

    |

  13. int(0)^(pi) (x sin x)/(1+ cos^(2) x)dx=

    Text Solution

    |

  14. Prove that :int(0)^(pi//2) (x sin x cos x)/(sin^(4) x+ cos^(4)x)dx =(p...

    Text Solution

    |

  15. int(pi)^(5pi//4) (sin 2x)/(cos^(4) x +sin^(4)x) dx=

    Text Solution

    |

  16. Prove that :int(0)^(pi) (x)/(a^(2) cos^(2) x+b^(2) sin^(2) x)dx =(pi^(...

    Text Solution

    |

  17. int(0)^(pi/2)logsinx=-(pi/2)log2 int(0)^(pi) x log sin x dx=

    Text Solution

    |

  18. If I(1)= int(0)^(pi) x f {sin^(3) x +cos^(2)x} dx and I(2)= pi int(0)^...

    Text Solution

    |

  19. int(0)^(pi) x f (sin x)dx=

    Text Solution

    |

  20. Evaluate int0 ^oo log(x+1/x) dx / (1+x^2)

    Text Solution

    |