Home
Class 12
MATHS
int(1//2)^(2) (1)/(x) cosec^(101) (x-(1)...

`int_(1//2)^(2) (1)/(x) cosec^(101) (x-(1)/(x))dx`=

A

`1//4`

B

1

C

0

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{\frac{1}{2}}^{2} \frac{1}{x} \csc^{101} \left( x - \frac{1}{x} \right) dx, \] we will use a substitution method. ### Step 1: Substitution Let \( t = \frac{1}{x} \). Then, we differentiate \( t \) with respect to \( x \): \[ \frac{dt}{dx} = -\frac{1}{x^2} \implies dx = -\frac{1}{t^2} dt. \] ### Step 2: Change the limits of integration When \( x = \frac{1}{2} \), \( t = 2 \). When \( x = 2 \), \( t = \frac{1}{2} \). Thus, the limits change from \( x: \frac{1}{2} \to 2 \) to \( t: 2 \to \frac{1}{2} \). ### Step 3: Substitute in the integral Now we substitute \( x \) and \( dx \) in the integral: \[ I = \int_{2}^{\frac{1}{2}} \frac{1}{\frac{1}{t}} \csc^{101} \left( \frac{1}{t} - t \right) \left(-\frac{1}{t^2}\right) dt. \] This simplifies to: \[ I = \int_{2}^{\frac{1}{2}} -t \csc^{101} \left( \frac{1}{t} - t \right) \frac{1}{t^2} dt = \int_{2}^{\frac{1}{2}} -\csc^{101} \left( \frac{1}{t} - t \right) dt. \] ### Step 4: Change the order of integration Reversing the limits of integration gives us: \[ I = \int_{\frac{1}{2}}^{2} \csc^{101} \left( \frac{1}{t} - t \right) dt. \] ### Step 5: Relate the integrals Now we have: \[ I = \int_{\frac{1}{2}}^{2} \csc^{101} \left( \frac{1}{x} - x \right) dx. \] ### Step 6: Combine the integrals Adding the two expressions for \( I \): \[ 2I = \int_{\frac{1}{2}}^{2} \left( \csc^{101} \left( x - \frac{1}{x} \right) + \csc^{101} \left( \frac{1}{x} - x \right) \right) dx. \] ### Step 7: Use the property of cosecant Using the property that \( \csc(-\theta) = -\csc(\theta) \), we find that: \[ \csc^{101} \left( \frac{1}{x} - x \right) = -\csc^{101} \left( x - \frac{1}{x} \right). \] Thus, the integral simplifies to: \[ 2I = \int_{\frac{1}{2}}^{2} 0 \, dx = 0. \] ### Step 8: Solve for \( I \) This implies: \[ I = 0. \] ### Final Answer Thus, the value of the integral is: \[ \boxed{0}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (3) (Multiple Choice Questions)|38 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

If int_((1)/(2))^(2)(1)/(x)cos ec^(101)(x-(1)/(x))dx=k then the value of k is:

int_((1)/(2))^(2)(1)/(x)sin^(101)(x-(1)/(x))dx=

(d)/(dx)csc^(-1)((1+x^(2))/(2x))

int_(1)^(2)(1)/(x sqrt(x^(2)-1))dx=

int_(-1)^(1)sec^(4)x cosec^(5)(x)

"cosec"^(-1)((1+x^(2))/(2x))

int_(1)^(2)(x^(2)-(1)/(x)+1)dx

int_(0)^(102)(x-1)(x-2)dots(x-100)xx((1)/(x-1)+(1)/(x-2)+.(.1)/(x-100))dx=101!-100

int_(1)^(2)(dx)/((x+1)sqrt(x^(2)-1))

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (2) (Multiple Choice Questions)
  1. int(0)^(pi//2) ((cos x-sin x))/((1+sin x cos x)) dx

    Text Solution

    |

  2. int(0)^(pi//2) (cos 2x)/((sin x +cos x)^(2)) dx=

    Text Solution

    |

  3. int(1//2)^(2) (1)/(x) cosec^(101) (x-(1)/(x))dx=

    Text Solution

    |

  4. Given that int(0)^(pi//2) sin^(4) x cos^(2) x dx= (pi)/(32), then int(...

    Text Solution

    |

  5. The value of int(0)^(pi//2) log ((4+3 sin x)/(4+3 cos x)) dx is

    Text Solution

    |

  6. int(0)^(pi//2) (dx)/(sqrt(tan x)- sqrt(cot x))=

    Text Solution

    |

  7. The value of int(0)^(pi) (2^(sin x)cos x)/(s^([sin x])).dx when [.] de...

    Text Solution

    |

  8. The value of the integral int(0)^(pi//2) sin 2x log tan x dx equals

    Text Solution

    |

  9. int(0)^(pi) e^(cos^(2)x) cos^(3) (2n+1) x dx, (n in I)=

    Text Solution

    |

  10. int(0)^(pi) (x sin x)/(1+ cos^(2) x)dx=

    Text Solution

    |

  11. Prove that :int(0)^(pi//2) (x sin x cos x)/(sin^(4) x+ cos^(4)x)dx =(p...

    Text Solution

    |

  12. int(pi)^(5pi//4) (sin 2x)/(cos^(4) x +sin^(4)x) dx=

    Text Solution

    |

  13. Prove that :int(0)^(pi) (x)/(a^(2) cos^(2) x+b^(2) sin^(2) x)dx =(pi^(...

    Text Solution

    |

  14. int(0)^(pi/2)logsinx=-(pi/2)log2 int(0)^(pi) x log sin x dx=

    Text Solution

    |

  15. If I(1)= int(0)^(pi) x f {sin^(3) x +cos^(2)x} dx and I(2)= pi int(0)^...

    Text Solution

    |

  16. int(0)^(pi) x f (sin x)dx=

    Text Solution

    |

  17. Evaluate int0 ^oo log(x+1/x) dx / (1+x^2)

    Text Solution

    |

  18. int(0)^(pi//2) [2log sin x-log sin 2x] dx=

    Text Solution

    |

  19. If int(0)^(pi) x f(sin x)dx= k int(0)^(pi//2) f(sin x) dx then the val...

    Text Solution

    |

  20. For n gt 0 int(0)^(2pi)(x sin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx= ….

    Text Solution

    |