Home
Class 12
MATHS
Given that int(0)^(pi//2) sin^(4) x cos^...

Given that `int_(0)^(pi//2) sin^(4) x cos^(2) x dx= (pi)/(32)`, then `int_(0)^(pi//2) cos^(4) x sin^(2) x dx`=

A

`(pi)/(32)`

B

`(3pi)/(32)`

C

`(pi)/(2)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the integral \[ I = \int_{0}^{\frac{\pi}{2}} \cos^4 x \sin^2 x \, dx \] Given that \[ \int_{0}^{\frac{\pi}{2}} \sin^4 x \cos^2 x \, dx = \frac{\pi}{32} \] we can use a property of definite integrals that states: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] ### Step 1: Apply the Property Let’s denote \[ I = \int_{0}^{\frac{\pi}{2}} \cos^4 x \sin^2 x \, dx \] Now, we will apply the property mentioned above: \[ I = \int_{0}^{\frac{\pi}{2}} \cos^4 x \sin^2 x \, dx = \int_{0}^{\frac{\pi}{2}} \sin^4\left(\frac{\pi}{2} - x\right) \cos^2\left(\frac{\pi}{2} - x\right) \, dx \] Using the identities \(\sin\left(\frac{\pi}{2} - x\right) = \cos x\) and \(\cos\left(\frac{\pi}{2} - x\right) = \sin x\), we can rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \sin^4 x \cos^2 x \, dx \] ### Step 2: Relate the Two Integrals Now we have: \[ I = \int_{0}^{\frac{\pi}{2}} \sin^4 x \cos^2 x \, dx \] From the problem statement, we know: \[ \int_{0}^{\frac{\pi}{2}} \sin^4 x \cos^2 x \, dx = \frac{\pi}{32} \] ### Step 3: Conclusion Thus, we can conclude that: \[ I = \frac{\pi}{32} \] Therefore, the value of \[ \int_{0}^{\frac{\pi}{2}} \cos^4 x \sin^2 x \, dx = \frac{\pi}{32} \] ### Final Answer \[ \int_{0}^{\frac{\pi}{2}} \cos^4 x \sin^2 x \, dx = \frac{\pi}{32} \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (3) (Multiple Choice Questions)|38 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(pi//2)sin^(4)x cos^(2)x dx=(pi)/(32) , then int_(0)^(pi//2)sin^(2)x cos^(4)x dx=

int_(0)^(pi) x sin x cos^(2)x\ dx

int_(0)^(pi) x sin x. cos^(2) x dx

int_(0)^( pi/2)sin^(2)x cos x dx

int_(0)^(pi//2) x sin x cos x dx

int_(0)^(pi/2)(sin^(2)x*cos x)dx=

int_(-pi)^(pi)sin^(2)x.cos^(2)x dx=

int_(0)^(pi)(cos^(4)x-sin^(4)x)dx=

int_(0)^( pi/2)|cos x-sin x|dx

int_(0)^(pi//2) (sinx )/(sin x + cos x ) dx=

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (2) (Multiple Choice Questions)
  1. int(0)^(pi//2) (cos 2x)/((sin x +cos x)^(2)) dx=

    Text Solution

    |

  2. int(1//2)^(2) (1)/(x) cosec^(101) (x-(1)/(x))dx=

    Text Solution

    |

  3. Given that int(0)^(pi//2) sin^(4) x cos^(2) x dx= (pi)/(32), then int(...

    Text Solution

    |

  4. The value of int(0)^(pi//2) log ((4+3 sin x)/(4+3 cos x)) dx is

    Text Solution

    |

  5. int(0)^(pi//2) (dx)/(sqrt(tan x)- sqrt(cot x))=

    Text Solution

    |

  6. The value of int(0)^(pi) (2^(sin x)cos x)/(s^([sin x])).dx when [.] de...

    Text Solution

    |

  7. The value of the integral int(0)^(pi//2) sin 2x log tan x dx equals

    Text Solution

    |

  8. int(0)^(pi) e^(cos^(2)x) cos^(3) (2n+1) x dx, (n in I)=

    Text Solution

    |

  9. int(0)^(pi) (x sin x)/(1+ cos^(2) x)dx=

    Text Solution

    |

  10. Prove that :int(0)^(pi//2) (x sin x cos x)/(sin^(4) x+ cos^(4)x)dx =(p...

    Text Solution

    |

  11. int(pi)^(5pi//4) (sin 2x)/(cos^(4) x +sin^(4)x) dx=

    Text Solution

    |

  12. Prove that :int(0)^(pi) (x)/(a^(2) cos^(2) x+b^(2) sin^(2) x)dx =(pi^(...

    Text Solution

    |

  13. int(0)^(pi/2)logsinx=-(pi/2)log2 int(0)^(pi) x log sin x dx=

    Text Solution

    |

  14. If I(1)= int(0)^(pi) x f {sin^(3) x +cos^(2)x} dx and I(2)= pi int(0)^...

    Text Solution

    |

  15. int(0)^(pi) x f (sin x)dx=

    Text Solution

    |

  16. Evaluate int0 ^oo log(x+1/x) dx / (1+x^2)

    Text Solution

    |

  17. int(0)^(pi//2) [2log sin x-log sin 2x] dx=

    Text Solution

    |

  18. If int(0)^(pi) x f(sin x)dx= k int(0)^(pi//2) f(sin x) dx then the val...

    Text Solution

    |

  19. For n gt 0 int(0)^(2pi)(x sin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx= ….

    Text Solution

    |

  20. int(0)^(pi//2) (sin^(2)x)/(sin x+cos x) dx is equal to

    Text Solution

    |