Home
Class 12
MATHS
int(0)^(pi) e^(cos^(2)x) cos^(3) (2n+1) ...

`int_(0)^(pi) e^(cos^(2)x) cos^(3) (2n+1) x dx, (n in I)`=

A

`pi`

B

0

C

1

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_0^{\pi} e^{\cos^2 x} \cos^{3}(2n + 1)x \, dx \] where \( n \in \mathbb{I} \), we will use the property of definite integrals which states that if \( f(a - x) = -f(x) \), then \[ \int_0^a f(x) \, dx = 0. \] ### Step 1: Define the function Let \[ f(x) = e^{\cos^2 x} \cos^{3}(2n + 1)x. \] ### Step 2: Find \( f(\pi - x) \) Now, we need to calculate \( f(\pi - x) \): \[ f(\pi - x) = e^{\cos^2(\pi - x)} \cos^{3}(2n + 1)(\pi - x). \] Using the property of cosine, we know that \[ \cos(\pi - x) = -\cos x. \] Thus, \[ \cos^{3}(2n + 1)(\pi - x) = (-\cos(2n + 1)x)^{3} = -\cos^{3}(2n + 1)x. \] Also, since \( \cos^2(\pi - x) = \cos^2 x \), we have: \[ f(\pi - x) = e^{\cos^2 x} (-\cos^{3}(2n + 1)x) = -e^{\cos^2 x} \cos^{3}(2n + 1)x = -f(x). \] ### Step 3: Apply the property of definite integrals Since we have shown that \[ f(\pi - x) = -f(x), \] we can apply the property mentioned earlier: \[ \int_0^{\pi} f(x) \, dx = 0. \] ### Conclusion Thus, we conclude that \[ \int_0^{\pi} e^{\cos^2 x} \cos^{3}(2n + 1)x \, dx = 0. \] ### Final Answer The value of the integral is \[ \boxed{0}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (3) (Multiple Choice Questions)|38 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

Q.int_(0)^( pi)(e^(cos^(2)x)(cos^(3)(2n+1)xdx,n in I

For any value of nin I, int_(0)^(pi)e^(cos^(2)x)cos^(3)[(2n+1)x]dx equals

For any integer n, the integral int_(0)^( pi)e^(cos^(2))cos^(3)(2n+1)xdx has the value

For any integer n,the integral int_(0)^(3) e^(sin^(2)x)cos^(3)(2n+1)x" dx" has the value

The value of int_(0)^(pi)e^(cos^(2)x)cos^(5)3x dx is

int_(0)^(pi//2) e^(x) cos x" " dx=

I=int_(0)^(2 pi)cos^(-1)(cos x)dx

Evaluate int_(0)^(2pi)(xcos^(2n)x)/(cos^(2n)x+sin^(2n)x)dx

The value of int_(0)^( pi)e^(sin^(2)x)cos(2n+1)xdx=

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (2) (Multiple Choice Questions)
  1. The value of int(0)^(pi) (2^(sin x)cos x)/(s^([sin x])).dx when [.] de...

    Text Solution

    |

  2. The value of the integral int(0)^(pi//2) sin 2x log tan x dx equals

    Text Solution

    |

  3. int(0)^(pi) e^(cos^(2)x) cos^(3) (2n+1) x dx, (n in I)=

    Text Solution

    |

  4. int(0)^(pi) (x sin x)/(1+ cos^(2) x)dx=

    Text Solution

    |

  5. Prove that :int(0)^(pi//2) (x sin x cos x)/(sin^(4) x+ cos^(4)x)dx =(p...

    Text Solution

    |

  6. int(pi)^(5pi//4) (sin 2x)/(cos^(4) x +sin^(4)x) dx=

    Text Solution

    |

  7. Prove that :int(0)^(pi) (x)/(a^(2) cos^(2) x+b^(2) sin^(2) x)dx =(pi^(...

    Text Solution

    |

  8. int(0)^(pi/2)logsinx=-(pi/2)log2 int(0)^(pi) x log sin x dx=

    Text Solution

    |

  9. If I(1)= int(0)^(pi) x f {sin^(3) x +cos^(2)x} dx and I(2)= pi int(0)^...

    Text Solution

    |

  10. int(0)^(pi) x f (sin x)dx=

    Text Solution

    |

  11. Evaluate int0 ^oo log(x+1/x) dx / (1+x^2)

    Text Solution

    |

  12. int(0)^(pi//2) [2log sin x-log sin 2x] dx=

    Text Solution

    |

  13. If int(0)^(pi) x f(sin x)dx= k int(0)^(pi//2) f(sin x) dx then the val...

    Text Solution

    |

  14. For n gt 0 int(0)^(2pi)(x sin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx= ….

    Text Solution

    |

  15. int(0)^(pi//2) (sin^(2)x)/(sin x+cos x) dx is equal to

    Text Solution

    |

  16. The value of the integral int(0)^(1) x (1-x)^(n) dx is

    Text Solution

    |

  17. If int(0)^(1) x^(m) (1-x)^(n) dx= R int(0)^(1) x^(n) (1-x)^(m) dx, the...

    Text Solution

    |

  18. If I= int(0)^(1) (e^(t))/(1+t) dt, then p= int(0)^(1) e^(t) log (1+t) ...

    Text Solution

    |

  19. int(0)^(pi//2n) (dx)/(1+ cot^(n) nx) is equal to

    Text Solution

    |

  20. The value of the integral underset(0)overset(1)int cot^(-1) (1-x+x^...

    Text Solution

    |