Home
Class 12
MATHS
int(0)^(pi) (x sin x)/(1+ cos^(2) x)dx=...

`int_(0)^(pi) (x sin x)/(1+ cos^(2) x)dx`=

A

`(pi^(2))/(8)`

B

`(pi^(2))/(16)`

C

`(pi^(2))/(4)`

D

`(pi^(2))/(32)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} \frac{x \sin x}{1 + \cos^2 x} \, dx \), we will use the property of definite integrals that states: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] ### Step 1: Apply the property of definite integrals Let’s apply this property to our integral: \[ I = \int_{0}^{\pi} \frac{x \sin x}{1 + \cos^2 x} \, dx = \int_{0}^{\pi} \frac{(\pi - x) \sin(\pi - x)}{1 + \cos^2(\pi - x)} \, dx \] ### Step 2: Simplify the expression Using the identities \(\sin(\pi - x) = \sin x\) and \(\cos(\pi - x) = -\cos x\), we can rewrite the integral: \[ I = \int_{0}^{\pi} \frac{(\pi - x) \sin x}{1 + \cos^2 x} \, dx \] ### Step 3: Combine the two integrals Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\pi} \frac{x \sin x}{1 + \cos^2 x} \, dx \) 2. \( I = \int_{0}^{\pi} \frac{(\pi - x) \sin x}{1 + \cos^2 x} \, dx \) Adding these two equations gives: \[ 2I = \int_{0}^{\pi} \frac{x \sin x}{1 + \cos^2 x} \, dx + \int_{0}^{\pi} \frac{(\pi - x) \sin x}{1 + \cos^2 x} \, dx \] This simplifies to: \[ 2I = \int_{0}^{\pi} \frac{\pi \sin x}{1 + \cos^2 x} \, dx \] ### Step 4: Solve for \( I \) Now, we can express \( I \): \[ I = \frac{1}{2} \int_{0}^{\pi} \frac{\pi \sin x}{1 + \cos^2 x} \, dx \] ### Step 5: Change of variable Let \( t = \cos x \), then \( dt = -\sin x \, dx \). The limits change as follows: - When \( x = 0 \), \( t = 1 \) - When \( x = \pi \), \( t = -1 \) Thus, we have: \[ I = \frac{\pi}{2} \int_{1}^{-1} \frac{-1}{1 + t^2} \, dt = \frac{\pi}{2} \int_{-1}^{1} \frac{1}{1 + t^2} \, dt \] ### Step 6: Evaluate the integral The integral \( \int \frac{1}{1 + t^2} \, dt \) is known to be \( \tan^{-1}(t) \). Therefore: \[ I = \frac{\pi}{2} \left[ \tan^{-1}(t) \right]_{-1}^{1} = \frac{\pi}{2} \left( \tan^{-1}(1) - \tan^{-1}(-1) \right) \] Since \( \tan^{-1}(1) = \frac{\pi}{4} \) and \( \tan^{-1}(-1) = -\frac{\pi}{4} \): \[ I = \frac{\pi}{2} \left( \frac{\pi}{4} - \left(-\frac{\pi}{4}\right) \right) = \frac{\pi}{2} \cdot \frac{\pi}{2} = \frac{\pi^2}{4} \] ### Final Result Thus, the value of the integral is: \[ I = \frac{\pi^2}{4} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (3) (Multiple Choice Questions)|38 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi/2)(x sin x)/(1+cos^(2)x)dx

int_(0)^( pi)(x sin^(3)x)/(1+cos^(2)x)dx

int_(0)^( pi)(sin x)/(1+cos^(2)x)dx =

int_(0)^(pi) x sin x cos^(2)x\ dx

int_(0)^(pi) x sin x. cos^(2) x dx

If I_(1) = int_(0)^(pi) (x sin x)/(1+cos^2x) dx , I_(2) = int_(0)^(pi) x sin^(4)xdx then, I_(1) : I_(2) is equal to

Evaluate int_(0)^( pi)(x sin x)/(1+cos^(2)x)backslash dx

Find the value of int_(0)^( pi)(x sin x)/(1+cos^(2)x)backslash dx

int_(0)^( pi)(x sin x)/(1+cos^(2)x)backslash dx

int_(0)^( pi/2)(sin x)/(1+cos x)dx

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (2) (Multiple Choice Questions)
  1. The value of the integral int(0)^(pi//2) sin 2x log tan x dx equals

    Text Solution

    |

  2. int(0)^(pi) e^(cos^(2)x) cos^(3) (2n+1) x dx, (n in I)=

    Text Solution

    |

  3. int(0)^(pi) (x sin x)/(1+ cos^(2) x)dx=

    Text Solution

    |

  4. Prove that :int(0)^(pi//2) (x sin x cos x)/(sin^(4) x+ cos^(4)x)dx =(p...

    Text Solution

    |

  5. int(pi)^(5pi//4) (sin 2x)/(cos^(4) x +sin^(4)x) dx=

    Text Solution

    |

  6. Prove that :int(0)^(pi) (x)/(a^(2) cos^(2) x+b^(2) sin^(2) x)dx =(pi^(...

    Text Solution

    |

  7. int(0)^(pi/2)logsinx=-(pi/2)log2 int(0)^(pi) x log sin x dx=

    Text Solution

    |

  8. If I(1)= int(0)^(pi) x f {sin^(3) x +cos^(2)x} dx and I(2)= pi int(0)^...

    Text Solution

    |

  9. int(0)^(pi) x f (sin x)dx=

    Text Solution

    |

  10. Evaluate int0 ^oo log(x+1/x) dx / (1+x^2)

    Text Solution

    |

  11. int(0)^(pi//2) [2log sin x-log sin 2x] dx=

    Text Solution

    |

  12. If int(0)^(pi) x f(sin x)dx= k int(0)^(pi//2) f(sin x) dx then the val...

    Text Solution

    |

  13. For n gt 0 int(0)^(2pi)(x sin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx= ….

    Text Solution

    |

  14. int(0)^(pi//2) (sin^(2)x)/(sin x+cos x) dx is equal to

    Text Solution

    |

  15. The value of the integral int(0)^(1) x (1-x)^(n) dx is

    Text Solution

    |

  16. If int(0)^(1) x^(m) (1-x)^(n) dx= R int(0)^(1) x^(n) (1-x)^(m) dx, the...

    Text Solution

    |

  17. If I= int(0)^(1) (e^(t))/(1+t) dt, then p= int(0)^(1) e^(t) log (1+t) ...

    Text Solution

    |

  18. int(0)^(pi//2n) (dx)/(1+ cot^(n) nx) is equal to

    Text Solution

    |

  19. The value of the integral underset(0)overset(1)int cot^(-1) (1-x+x^...

    Text Solution

    |

  20. int(0)^(1) tan^(-1) (1-x+x^(2)) dx=

    Text Solution

    |