Home
Class 12
MATHS
int(pi)^(5pi//4) (sin 2x)/(cos^(4) x +si...

`int_(pi)^(5pi//4) (sin 2x)/(cos^(4) x +sin^(4)x) dx`=

A

`pi//4`

B

`pi//2`

C

`3pi//4`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{\pi}^{\frac{5\pi}{4}} \frac{\sin 2x}{\cos^4 x + \sin^4 x} \, dx, \] we will follow these steps: ### Step 1: Simplify the Denominator We can rewrite the denominator \(\cos^4 x + \sin^4 x\) using the identity: \[ a^4 + b^4 = (a^2 + b^2)^2 - 2a^2b^2. \] Let \(a = \cos^2 x\) and \(b = \sin^2 x\). Then: \[ \cos^4 x + \sin^4 x = (\cos^2 x + \sin^2 x)^2 - 2\cos^2 x \sin^2 x = 1 - 2\cos^2 x \sin^2 x. \] Thus, we have: \[ I = \int_{\pi}^{\frac{5\pi}{4}} \frac{\sin 2x}{1 - 2\cos^2 x \sin^2 x} \, dx. \] ### Step 2: Use the Identity for \(\sin 2x\) Recall that \(\sin 2x = 2 \sin x \cos x\). Therefore, we can rewrite the integral as: \[ I = \int_{\pi}^{\frac{5\pi}{4}} \frac{2 \sin x \cos x}{1 - 2\cos^2 x \sin^2 x} \, dx. \] ### Step 3: Substitution Let \(u = \sin 2x\). Then, the derivative \(du = 2 \cos 2x \, dx\), or \(dx = \frac{du}{2 \cos 2x}\). Now, we need to change the limits of integration. When \(x = \pi\), \(u = \sin 2\pi = 0\), and when \(x = \frac{5\pi}{4}\), \(u = \sin \frac{5\pi}{2} = 1\). ### Step 4: Change of Variables Now substituting into the integral gives: \[ I = \int_{0}^{1} \frac{u}{1 - 2\left(\frac{1-u^2}{2}\right)} \cdot \frac{du}{2 \sqrt{1-u^2}}. \] ### Step 5: Simplify the Integral The denominator simplifies to: \[ 1 - (1 - u^2) = u^2. \] Thus, the integral becomes: \[ I = \int_{0}^{1} \frac{u}{u^2} \cdot \frac{du}{2 \sqrt{1-u^2}} = \frac{1}{2} \int_{0}^{1} \frac{1}{\sqrt{1-u^2}} \, du. \] ### Step 6: Evaluate the Integral The integral \(\int \frac{1}{\sqrt{1-u^2}} \, du\) is a standard integral that evaluates to \(\sin^{-1}(u)\): \[ I = \frac{1}{2} \left[ \sin^{-1}(u) \right]_{0}^{1} = \frac{1}{2} \left( \frac{\pi}{2} - 0 \right) = \frac{\pi}{4}. \] ### Final Answer Thus, the value of the integral is: \[ \boxed{\frac{\pi}{4}}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (3) (Multiple Choice Questions)|38 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

Compute the integral int_(-pi)^(pi)(sin 2 x)/( cos^(4) x + sin^(4) x) dx

int_(0)^(pi//4)(sin 2 x)/(sin^(4) x + cos^(4) x ) dx =

Evaluate the following : int_(0)^(pi//4)(sin 2x)/(sin^(4)x+cos^(4)x)dx.

Evaluate the following definite integrals: int_(0)^(pi//2)(sin 2x)/(sin^(4)x+cos^(4)x)dx

int_(-pi//2)^(pi//2)(sin^(4)x)/(sin^(4)x + cos^(4)x)dx=

int _(-pi)^(pi) (sin^(4)x)/(sin^(4) x + cos^(4) x )dx is equal to

Evaluate the definite integrals int_(0)^((pi)/(4))(sin x cos x)/(cos^(4)x+sin^(2)x)dx

int_(0)^((pi)/(2))(x sin x cos x)/(cos^(4)x+sin^(4)x)dx=

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (2) (Multiple Choice Questions)
  1. int(0)^(pi) (x sin x)/(1+ cos^(2) x)dx=

    Text Solution

    |

  2. Prove that :int(0)^(pi//2) (x sin x cos x)/(sin^(4) x+ cos^(4)x)dx =(p...

    Text Solution

    |

  3. int(pi)^(5pi//4) (sin 2x)/(cos^(4) x +sin^(4)x) dx=

    Text Solution

    |

  4. Prove that :int(0)^(pi) (x)/(a^(2) cos^(2) x+b^(2) sin^(2) x)dx =(pi^(...

    Text Solution

    |

  5. int(0)^(pi/2)logsinx=-(pi/2)log2 int(0)^(pi) x log sin x dx=

    Text Solution

    |

  6. If I(1)= int(0)^(pi) x f {sin^(3) x +cos^(2)x} dx and I(2)= pi int(0)^...

    Text Solution

    |

  7. int(0)^(pi) x f (sin x)dx=

    Text Solution

    |

  8. Evaluate int0 ^oo log(x+1/x) dx / (1+x^2)

    Text Solution

    |

  9. int(0)^(pi//2) [2log sin x-log sin 2x] dx=

    Text Solution

    |

  10. If int(0)^(pi) x f(sin x)dx= k int(0)^(pi//2) f(sin x) dx then the val...

    Text Solution

    |

  11. For n gt 0 int(0)^(2pi)(x sin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx= ….

    Text Solution

    |

  12. int(0)^(pi//2) (sin^(2)x)/(sin x+cos x) dx is equal to

    Text Solution

    |

  13. The value of the integral int(0)^(1) x (1-x)^(n) dx is

    Text Solution

    |

  14. If int(0)^(1) x^(m) (1-x)^(n) dx= R int(0)^(1) x^(n) (1-x)^(m) dx, the...

    Text Solution

    |

  15. If I= int(0)^(1) (e^(t))/(1+t) dt, then p= int(0)^(1) e^(t) log (1+t) ...

    Text Solution

    |

  16. int(0)^(pi//2n) (dx)/(1+ cot^(n) nx) is equal to

    Text Solution

    |

  17. The value of the integral underset(0)overset(1)int cot^(-1) (1-x+x^...

    Text Solution

    |

  18. int(0)^(1) tan^(-1) (1-x+x^(2)) dx=

    Text Solution

    |

  19. int(0)^(pi//2) (cos x dx)/(1+ cos x +sin x)=

    Text Solution

    |

  20. Let I= int(0)^(pi//2) (dx)/(1+sin x') then int(0)^(pi) (x^(2) cos x)/(...

    Text Solution

    |