Home
Class 12
MATHS
If I(1)= int(0)^(pi) x f {sin^(3) x +cos...

If `I_(1)= int_(0)^(pi) x f {sin^(3) x +cos^(2)x} dx and I_(2)= pi int_(0)^(pi//2) f (sin^(3)x + cos^(2) x}dx` then

A

`I_(1)= I_(2)`

B

`I_(1) + I_(2)= 0`

C

`I_(1)= 2I_(2)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the relationship between the integrals \( I_1 \) and \( I_2 \). ### Step-by-Step Solution 1. **Define the Integrals**: \[ I_1 = \int_0^{\pi} x f(\sin^3 x + \cos^2 x) \, dx \] \[ I_2 = \pi \int_0^{\frac{\pi}{2}} f(\sin^3 x + \cos^2 x) \, dx \] 2. **Use the Property of Integrals**: We will use the property of integrals: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx \] Applying this to \( I_1 \): \[ I_1 = \int_0^{\pi} (\pi - x) f(\sin^3(\pi - x) + \cos^2(\pi - x)) \, dx \] 3. **Simplify the Function**: We know that: \[ \sin(\pi - x) = \sin x \quad \text{and} \quad \cos(\pi - x) = -\cos x \] Therefore: \[ \cos^2(\pi - x) = \cos^2 x \] Thus: \[ I_1 = \int_0^{\pi} (\pi - x) f(\sin^3 x + \cos^2 x) \, dx \] 4. **Split the Integral**: We can split \( I_1 \) into two parts: \[ I_1 = \pi \int_0^{\pi} f(\sin^3 x + \cos^2 x) \, dx - \int_0^{\pi} x f(\sin^3 x + \cos^2 x) \, dx \] The second integral is \( I_1 \) itself, so we can write: \[ 2I_1 = \pi \int_0^{\pi} f(\sin^3 x + \cos^2 x) \, dx \] 5. **Change the Limits**: Now, we use the property: \[ \int_0^a f(x) \, dx = 2 \int_0^{\frac{a}{2}} f(x) \, dx \] Applying this to the integral: \[ \int_0^{\pi} f(\sin^3 x + \cos^2 x) \, dx = 2 \int_0^{\frac{\pi}{2}} f(\sin^3 x + \cos^2 x) \, dx \] Therefore: \[ 2I_1 = \pi \cdot 2 \int_0^{\frac{\pi}{2}} f(\sin^3 x + \cos^2 x) \, dx = 2\pi \int_0^{\frac{\pi}{2}} f(\sin^3 x + \cos^2 x) \, dx \] 6. **Relate \( I_1 \) and \( I_2 \)**: Since \( I_2 = \pi \int_0^{\frac{\pi}{2}} f(\sin^3 x + \cos^2 x) \, dx \), we can write: \[ 2I_1 = 2I_2 \] Thus, we conclude: \[ I_1 = I_2 \] ### Final Result The relationship between \( I_1 \) and \( I_2 \) is: \[ I_1 = I_2 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (3) (Multiple Choice Questions)|38 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

If I_(1)=int_(0)^( pi)xf(sin^(3)x+cos^(2)x)dx and I_(2)=int_(0)^((pi)/(2))f(sin^(3)x+cos^(2)x)dx, then relate I_(1) and I_(2)

int_(0)^(pi) x sin x cos^(2)x\ dx

int_(0)^(pi) x sin x. cos^(2) x dx

int_(0)^( pi/2)sin^(2)x cos x dx

int_(0)^(pi//2) x sin x cos x dx

int_(0)^(pi/2)(sin^(2)x*cos x)dx=

If int_(0)^(pi//2)sin^(4)x cos^(2)x dx=(pi)/(32) , then int_(0)^(pi//2)sin^(2)x cos^(4)x dx=

int_(0)^(pi) dx/(3+2sin x + cos x) =

int_(-pi)^(pi)sin^(2)x.cos^(2)x dx=

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (2) (Multiple Choice Questions)
  1. Prove that :int(0)^(pi) (x)/(a^(2) cos^(2) x+b^(2) sin^(2) x)dx =(pi^(...

    Text Solution

    |

  2. int(0)^(pi/2)logsinx=-(pi/2)log2 int(0)^(pi) x log sin x dx=

    Text Solution

    |

  3. If I(1)= int(0)^(pi) x f {sin^(3) x +cos^(2)x} dx and I(2)= pi int(0)^...

    Text Solution

    |

  4. int(0)^(pi) x f (sin x)dx=

    Text Solution

    |

  5. Evaluate int0 ^oo log(x+1/x) dx / (1+x^2)

    Text Solution

    |

  6. int(0)^(pi//2) [2log sin x-log sin 2x] dx=

    Text Solution

    |

  7. If int(0)^(pi) x f(sin x)dx= k int(0)^(pi//2) f(sin x) dx then the val...

    Text Solution

    |

  8. For n gt 0 int(0)^(2pi)(x sin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx= ….

    Text Solution

    |

  9. int(0)^(pi//2) (sin^(2)x)/(sin x+cos x) dx is equal to

    Text Solution

    |

  10. The value of the integral int(0)^(1) x (1-x)^(n) dx is

    Text Solution

    |

  11. If int(0)^(1) x^(m) (1-x)^(n) dx= R int(0)^(1) x^(n) (1-x)^(m) dx, the...

    Text Solution

    |

  12. If I= int(0)^(1) (e^(t))/(1+t) dt, then p= int(0)^(1) e^(t) log (1+t) ...

    Text Solution

    |

  13. int(0)^(pi//2n) (dx)/(1+ cot^(n) nx) is equal to

    Text Solution

    |

  14. The value of the integral underset(0)overset(1)int cot^(-1) (1-x+x^...

    Text Solution

    |

  15. int(0)^(1) tan^(-1) (1-x+x^(2)) dx=

    Text Solution

    |

  16. int(0)^(pi//2) (cos x dx)/(1+ cos x +sin x)=

    Text Solution

    |

  17. Let I= int(0)^(pi//2) (dx)/(1+sin x') then int(0)^(pi) (x^(2) cos x)/(...

    Text Solution

    |

  18. a(n) = int(0)^(pi//2) (sin^(2) nx)/(sin x)dx, then a(2)-a(1), a(3)-a(2...

    Text Solution

    |

  19. If f(x) and g(x) are continuous functions satisfying f(x)= f(a-x) and ...

    Text Solution

    |

  20. If f (x) is monotonic differentiable function on [a,b] then int(a)^(b)...

    Text Solution

    |