Home
Class 12
MATHS
int(0)^(pi) x f (sin x)dx=...

`int_(0)^(pi) x f (sin x)dx`=

A

`pi int_(0)^(pi) f (sin x) dx`

B

`(pi)/(2) int_(0)^(pi//2) f(sin x)dx`

C

`pi int_(0)^(pi//2) f (cos x)dx`

D

`pi int_(0)^(pi) f (cos x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} x f(\sin x) \, dx \), we will use a property of definite integrals. ### Step 1: Define the integral Let \[ I = \int_{0}^{\pi} x f(\sin x) \, dx \] ### Step 2: Use the property of definite integrals We can use the property that states: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] In our case, we will apply this property with \( a = \pi \): \[ I = \int_{0}^{\pi} x f(\sin x) \, dx = \int_{0}^{\pi} (\pi - x) f(\sin(\pi - x)) \, dx \] Since \( \sin(\pi - x) = \sin x \), we can rewrite the integral as: \[ I = \int_{0}^{\pi} (\pi - x) f(\sin x) \, dx \] ### Step 3: Simplify the integral Now we can express \( I \) in terms of itself: \[ I = \int_{0}^{\pi} \pi f(\sin x) \, dx - \int_{0}^{\pi} x f(\sin x) \, dx \] This gives us: \[ I = \pi \int_{0}^{\pi} f(\sin x) \, dx - I \] ### Step 4: Solve for \( I \) Adding \( I \) to both sides, we get: \[ 2I = \pi \int_{0}^{\pi} f(\sin x) \, dx \] Thus, \[ I = \frac{\pi}{2} \int_{0}^{\pi} f(\sin x) \, dx \] ### Step 5: Final expression The final expression for the integral is: \[ I = \frac{\pi}{2} \int_{0}^{\pi} f(\sin x) \, dx \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (3) (Multiple Choice Questions)|38 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

Prove the equality int_(0)^(pi) f (sin x) dx = 2 int_(0)^(pi//2) f (sin x) dx

int_(0)^( pi)xf(sin x)dx=(pi)/(2)int_(0)^( pi)f(sin x)dx

underset is If int_(0)^( pi)xf(sin x)dx=A int_(0)^((pi)/(2))f(sin x)dx, then A

int_(0)^(pi) dx/(1-sin x)=

int_(0)^( pi/2)(sin x)*dx

(i) Show that int_(0)^(pi)xf(sinx)dx =(pi)/(2)int_(0)^(pi)f (sin x)dx. (ii) Find the value of int_(-1)^(3//2)|x sin pix|dx .

Which of the following are true ?(i)int_(a)^( pi-a)xf(sin x)dx=(pi)/(2)int_(a)^( pi-a)f(sin x)dx( ii) int_(-a)^(a)f(x^(2))dx=2int_(0)^(a)f(x^(2))dx( iii) int_(0)^(n pi)f(cos^(2)x)dx=n int_(0)^( pi)f(cos x)dx,n in N (iv) int_(0)^(b-c)f(x+c)dx=int_(c)^(b)f(x)dx

int_(0)^(pi) sin 3x dx

If int_(0)^(pi/2) f ( sin2 x ) sin x dx = A int_(0)^(pi/4) f ( cos 2 x ) cos x dx then the value of A is ( sqrt2 = 1.41)

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (2) (Multiple Choice Questions)
  1. int(0)^(pi/2)logsinx=-(pi/2)log2 int(0)^(pi) x log sin x dx=

    Text Solution

    |

  2. If I(1)= int(0)^(pi) x f {sin^(3) x +cos^(2)x} dx and I(2)= pi int(0)^...

    Text Solution

    |

  3. int(0)^(pi) x f (sin x)dx=

    Text Solution

    |

  4. Evaluate int0 ^oo log(x+1/x) dx / (1+x^2)

    Text Solution

    |

  5. int(0)^(pi//2) [2log sin x-log sin 2x] dx=

    Text Solution

    |

  6. If int(0)^(pi) x f(sin x)dx= k int(0)^(pi//2) f(sin x) dx then the val...

    Text Solution

    |

  7. For n gt 0 int(0)^(2pi)(x sin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx= ….

    Text Solution

    |

  8. int(0)^(pi//2) (sin^(2)x)/(sin x+cos x) dx is equal to

    Text Solution

    |

  9. The value of the integral int(0)^(1) x (1-x)^(n) dx is

    Text Solution

    |

  10. If int(0)^(1) x^(m) (1-x)^(n) dx= R int(0)^(1) x^(n) (1-x)^(m) dx, the...

    Text Solution

    |

  11. If I= int(0)^(1) (e^(t))/(1+t) dt, then p= int(0)^(1) e^(t) log (1+t) ...

    Text Solution

    |

  12. int(0)^(pi//2n) (dx)/(1+ cot^(n) nx) is equal to

    Text Solution

    |

  13. The value of the integral underset(0)overset(1)int cot^(-1) (1-x+x^...

    Text Solution

    |

  14. int(0)^(1) tan^(-1) (1-x+x^(2)) dx=

    Text Solution

    |

  15. int(0)^(pi//2) (cos x dx)/(1+ cos x +sin x)=

    Text Solution

    |

  16. Let I= int(0)^(pi//2) (dx)/(1+sin x') then int(0)^(pi) (x^(2) cos x)/(...

    Text Solution

    |

  17. a(n) = int(0)^(pi//2) (sin^(2) nx)/(sin x)dx, then a(2)-a(1), a(3)-a(2...

    Text Solution

    |

  18. If f(x) and g(x) are continuous functions satisfying f(x)= f(a-x) and ...

    Text Solution

    |

  19. If f (x) is monotonic differentiable function on [a,b] then int(a)^(b)...

    Text Solution

    |

  20. Let T >0 be a fixed real number. Suppose f is continuous function such...

    Text Solution

    |