Home
Class 12
MATHS
If int(0)^(pi) x f(sin x)dx= k int(0)^(p...

If `int_(0)^(pi) x f(sin x)dx= k int_(0)^(pi//2) f(sin x) dx` then the value of k is

A

2

B

1

C

`pi`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( I = \int_{0}^{\pi} x f(\sin x) \, dx \) and relate it to the integral \( \int_{0}^{\frac{\pi}{2}} f(\sin x) \, dx \) to find the value of \( k \). ### Step-by-Step Solution: 1. **Define the Integral**: Let \( I = \int_{0}^{\pi} x f(\sin x) \, dx \). 2. **Use the Symmetry Property of Integrals**: We can use the property of integrals: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] In our case, we will set \( a = \pi \). Thus, we can rewrite \( I \) as: \[ I = \int_{0}^{\pi} (\pi - x) f(\sin(\pi - x)) \, dx \] 3. **Simplify the Integral**: Since \( \sin(\pi - x) = \sin x \), we have: \[ I = \int_{0}^{\pi} (\pi - x) f(\sin x) \, dx \] 4. **Expand the Integral**: Now we can expand this integral: \[ I = \int_{0}^{\pi} \pi f(\sin x) \, dx - \int_{0}^{\pi} x f(\sin x) \, dx \] This gives us: \[ I = \pi \int_{0}^{\pi} f(\sin x) \, dx - I \] 5. **Combine Like Terms**: Adding \( I \) to both sides results in: \[ 2I = \pi \int_{0}^{\pi} f(\sin x) \, dx \] 6. **Solve for \( I \)**: Dividing both sides by 2 gives: \[ I = \frac{\pi}{2} \int_{0}^{\pi} f(\sin x) \, dx \] 7. **Relate to the Given Equation**: We know from the problem statement: \[ I = k \int_{0}^{\frac{\pi}{2}} f(\sin x) \, dx \] 8. **Use the Property of Integrals Again**: We can relate the integral from \( 0 \) to \( \pi \) to the integral from \( 0 \) to \( \frac{\pi}{2} \): \[ \int_{0}^{\pi} f(\sin x) \, dx = 2 \int_{0}^{\frac{\pi}{2}} f(\sin x) \, dx \] Hence, \[ I = \frac{\pi}{2} \cdot 2 \int_{0}^{\frac{\pi}{2}} f(\sin x) \, dx = \pi \int_{0}^{\frac{\pi}{2}} f(\sin x) \, dx \] 9. **Compare Coefficients**: From the equations \( I = k \int_{0}^{\frac{\pi}{2}} f(\sin x) \, dx \) and \( I = \pi \int_{0}^{\frac{\pi}{2}} f(\sin x) \, dx \), we can equate: \[ k = \pi \] ### Final Result: Thus, the value of \( k \) is \( \pi \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (3) (Multiple Choice Questions)|38 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(pi)x f(sin x) dx = a int_(0)^(pi)f (sin x) dx , then a =

int_(0)^( pi/2)(sin x)*dx

int_(0)^( pi)xf(sin x)dx=(pi)/(2)int_(0)^( pi)f(sin x)dx

If int_(0)^(pi) x f (sin x) dx = A int _(0)^(pi//2) f(sin x) dx , then A is equal to

If int_(0)^(npi) f(cos^(2)x)dx=k int_(0)^(pi) f(cos^(2)x)dx , then the value of k, is

If int_(0)^(1)(tan^(-1)x)/(x)dx=k int_(0)^( pi/2)(x)/(sin x)dx then the value of k is

int_(0)^(pi) [2sin x]dx=

int_(0)^(pi//2)sin x.sin 2x dx=

(i) Show that int_(0)^(pi)xf(sinx)dx =(pi)/(2)int_(0)^(pi)f (sin x)dx. (ii) Find the value of int_(-1)^(3//2)|x sin pix|dx .

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (2) (Multiple Choice Questions)
  1. int(0)^(pi) x f (sin x)dx=

    Text Solution

    |

  2. Evaluate int0 ^oo log(x+1/x) dx / (1+x^2)

    Text Solution

    |

  3. int(0)^(pi//2) [2log sin x-log sin 2x] dx=

    Text Solution

    |

  4. If int(0)^(pi) x f(sin x)dx= k int(0)^(pi//2) f(sin x) dx then the val...

    Text Solution

    |

  5. For n gt 0 int(0)^(2pi)(x sin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx= ….

    Text Solution

    |

  6. int(0)^(pi//2) (sin^(2)x)/(sin x+cos x) dx is equal to

    Text Solution

    |

  7. The value of the integral int(0)^(1) x (1-x)^(n) dx is

    Text Solution

    |

  8. If int(0)^(1) x^(m) (1-x)^(n) dx= R int(0)^(1) x^(n) (1-x)^(m) dx, the...

    Text Solution

    |

  9. If I= int(0)^(1) (e^(t))/(1+t) dt, then p= int(0)^(1) e^(t) log (1+t) ...

    Text Solution

    |

  10. int(0)^(pi//2n) (dx)/(1+ cot^(n) nx) is equal to

    Text Solution

    |

  11. The value of the integral underset(0)overset(1)int cot^(-1) (1-x+x^...

    Text Solution

    |

  12. int(0)^(1) tan^(-1) (1-x+x^(2)) dx=

    Text Solution

    |

  13. int(0)^(pi//2) (cos x dx)/(1+ cos x +sin x)=

    Text Solution

    |

  14. Let I= int(0)^(pi//2) (dx)/(1+sin x') then int(0)^(pi) (x^(2) cos x)/(...

    Text Solution

    |

  15. a(n) = int(0)^(pi//2) (sin^(2) nx)/(sin x)dx, then a(2)-a(1), a(3)-a(2...

    Text Solution

    |

  16. If f(x) and g(x) are continuous functions satisfying f(x)= f(a-x) and ...

    Text Solution

    |

  17. If f (x) is monotonic differentiable function on [a,b] then int(a)^(b)...

    Text Solution

    |

  18. Let T >0 be a fixed real number. Suppose f is continuous function such...

    Text Solution

    |

  19. If lim(t to a) (int(a)^(t) f(t)dt-(t-a)/2 (f(t) -f(a)))/(t-a)^(3)= 0, ...

    Text Solution

    |

  20. If f(y)= e^(y), g(y)= y, y gt 0 and F(t) = int(0)^(t) f(t-y) g(y) dy, ...

    Text Solution

    |