Home
Class 12
MATHS
int(0)^(pi//2) (sin^(2)x)/(sin x+cos x) ...

`int_(0)^(pi//2) (sin^(2)x)/(sin x+cos x) dx` is equal to

A

`pi//2`

B

`sqrt2 log (sqrt2+1)`

C

`(1)/(sqrt2) log (sqrt2+1)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^2 x}{\sin x + \cos x} \, dx, \] we will use a symmetry property of definite integrals. ### Step 1: Set up the integral Let \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^2 x}{\sin x + \cos x} \, dx. \] ### Step 2: Use the property of definite integrals We can use the property that \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx. \] In our case, we will substitute \( x \) with \( \frac{\pi}{2} - x \): \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^2\left(\frac{\pi}{2} - x\right)}{\sin\left(\frac{\pi}{2} - x\right) + \cos\left(\frac{\pi}{2} - x\right)} \, dx. \] ### Step 3: Simplify the integral Using the identities \( \sin\left(\frac{\pi}{2} - x\right) = \cos x \) and \( \cos\left(\frac{\pi}{2} - x\right) = \sin x \), we have: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos^2 x}{\cos x + \sin x} \, dx. \] ### Step 4: Add the two integrals Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^2 x}{\sin x + \cos x} \, dx \) 2. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\cos^2 x}{\sin x + \cos x} \, dx \) Adding these two equations gives: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^2 x + \cos^2 x}{\sin x + \cos x} \, dx. \] ### Step 5: Use the Pythagorean identity Using the identity \( \sin^2 x + \cos^2 x = 1 \): \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{1}{\sin x + \cos x} \, dx. \] ### Step 6: Solve the integral Now we need to evaluate \[ \int_{0}^{\frac{\pi}{2}} \frac{1}{\sin x + \cos x} \, dx. \] We can factor out \( \sqrt{2} \): \[ \sin x + \cos x = \sqrt{2} \left( \sin x \cdot \frac{1}{\sqrt{2}} + \cos x \cdot \frac{1}{\sqrt{2}} \right). \] This can be rewritten as: \[ \sin x + \cos x = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right). \] Thus, \[ \int_{0}^{\frac{\pi}{2}} \frac{1}{\sin x + \cos x} \, dx = \frac{1}{\sqrt{2}} \int_{0}^{\frac{\pi}{2}} \sec\left(x + \frac{\pi}{4}\right) \, dx. \] ### Step 7: Evaluate the integral of secant The integral of \( \sec x \) is known: \[ \int \sec x \, dx = \ln |\sec x + \tan x| + C. \] Applying the limits: \[ \int_{0}^{\frac{\pi}{2}} \sec\left(x + \frac{\pi}{4}\right) \, dx = \left[ \ln |\sec\left(x + \frac{\pi}{4}\right) + \tan\left(x + \frac{\pi}{4}\right)| \right]_{0}^{\frac{\pi}{2}}. \] ### Step 8: Calculate the limits Calculating at the limits gives: At \( x = \frac{\pi}{2} \): \[ \sec\left(\frac{\pi}{2} + \frac{\pi}{4}\right) + \tan\left(\frac{\pi}{2} + \frac{\pi}{4}\right) \to \infty. \] At \( x = 0 \): \[ \sec\left(0 + \frac{\pi}{4}\right) + \tan\left(0 + \frac{\pi}{4}\right) = \sqrt{2} + 1. \] Thus, the integral diverges at the upper limit. ### Final Calculation Returning to our expression for \( 2I \): \[ 2I = \frac{1}{\sqrt{2}} \cdot \left( \ln(\sqrt{2} + 1) - \ln(1) \right) = \frac{1}{\sqrt{2}} \ln(\sqrt{2} + 1). \] Thus, \[ I = \frac{1}{2\sqrt{2}} \ln(\sqrt{2} + 1). \] ### Final Answer Therefore, the value of the integral is: \[ I = \frac{1}{\sqrt{2}} \ln(\sqrt{2} + 1). \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (3) (Multiple Choice Questions)|38 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(2))(sin^(3)x)/(sin x+cos x)dx is equal to

int_(0)^(pi//2) (sinx )/(sin x + cos x ) dx=

If int_(0)^((pi)/(2))(dx)/(1+sin x+cos x)=In2, then the value of int_(0)^((pi)/(2))(sin x)/(1+sin x+cos x)dx is equal to:

int_(0)^(pi/2)(sin^(2)x*cos x)dx=

int_(0)^(pi//2) (cos^(5)x)/(sin^(5)x+cos^(5)x)dx is equal to

int_(0)^( pi/2)(sin^(2)x)/(sin^(2)x+cos^(2)x)dx

int_(0) ^(pi//2) (sin x) /(sin x + cos x )^(2)dx=

int_(0)^(pi//2)(sin x - cos x)/(1-sin x cos x)dx=

int_(0)^( pi/2)sin^(2)x cos x dx

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (2) (Multiple Choice Questions)
  1. int(0)^(pi) x f (sin x)dx=

    Text Solution

    |

  2. Evaluate int0 ^oo log(x+1/x) dx / (1+x^2)

    Text Solution

    |

  3. int(0)^(pi//2) [2log sin x-log sin 2x] dx=

    Text Solution

    |

  4. If int(0)^(pi) x f(sin x)dx= k int(0)^(pi//2) f(sin x) dx then the val...

    Text Solution

    |

  5. For n gt 0 int(0)^(2pi)(x sin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx= ….

    Text Solution

    |

  6. int(0)^(pi//2) (sin^(2)x)/(sin x+cos x) dx is equal to

    Text Solution

    |

  7. The value of the integral int(0)^(1) x (1-x)^(n) dx is

    Text Solution

    |

  8. If int(0)^(1) x^(m) (1-x)^(n) dx= R int(0)^(1) x^(n) (1-x)^(m) dx, the...

    Text Solution

    |

  9. If I= int(0)^(1) (e^(t))/(1+t) dt, then p= int(0)^(1) e^(t) log (1+t) ...

    Text Solution

    |

  10. int(0)^(pi//2n) (dx)/(1+ cot^(n) nx) is equal to

    Text Solution

    |

  11. The value of the integral underset(0)overset(1)int cot^(-1) (1-x+x^...

    Text Solution

    |

  12. int(0)^(1) tan^(-1) (1-x+x^(2)) dx=

    Text Solution

    |

  13. int(0)^(pi//2) (cos x dx)/(1+ cos x +sin x)=

    Text Solution

    |

  14. Let I= int(0)^(pi//2) (dx)/(1+sin x') then int(0)^(pi) (x^(2) cos x)/(...

    Text Solution

    |

  15. a(n) = int(0)^(pi//2) (sin^(2) nx)/(sin x)dx, then a(2)-a(1), a(3)-a(2...

    Text Solution

    |

  16. If f(x) and g(x) are continuous functions satisfying f(x)= f(a-x) and ...

    Text Solution

    |

  17. If f (x) is monotonic differentiable function on [a,b] then int(a)^(b)...

    Text Solution

    |

  18. Let T >0 be a fixed real number. Suppose f is continuous function such...

    Text Solution

    |

  19. If lim(t to a) (int(a)^(t) f(t)dt-(t-a)/2 (f(t) -f(a)))/(t-a)^(3)= 0, ...

    Text Solution

    |

  20. If f(y)= e^(y), g(y)= y, y gt 0 and F(t) = int(0)^(t) f(t-y) g(y) dy, ...

    Text Solution

    |