Home
Class 12
MATHS
The value of the integral int(0)^(1) x (...

The value of the integral `int_(0)^(1) x (1-x)^(n) dx` is

A

`(1)/(n+1) + (1)/(n+2)`

B

`(1)/((n+1) (n+2))`

C

`(1)/(n+2) - (1)/(n+1)`

D

`2((1)/(n+1)- (1)/(n+2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1} x (1-x)^{n} \, dx \), we can use a property of definite integrals. Let's go through the solution step by step. ### Step 1: Define the Integral Let \[ I = \int_{0}^{1} x (1-x)^{n} \, dx \] ### Step 2: Use the Property of Definite Integrals We can use the property of definite integrals that states: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a-x) \, dx \] Applying this property, we can rewrite the integral \( I \) as: \[ I = \int_{0}^{1} (1-x) (1-(1-x))^{n} \, dx \] This simplifies to: \[ I = \int_{0}^{1} (1-x) x^{n} \, dx \] ### Step 3: Combine the Two Integrals Now we have two expressions for \( I \): 1. \( I = \int_{0}^{1} x (1-x)^{n} \, dx \) 2. \( I = \int_{0}^{1} (1-x) x^{n} \, dx \) Adding these two equations gives: \[ 2I = \int_{0}^{1} \left[ x (1-x)^{n} + (1-x) x^{n} \right] \, dx \] This can be simplified to: \[ 2I = \int_{0}^{1} \left[ x^{n} (1-x) + x (1-x)^{n} \right] \, dx \] ### Step 4: Factor Out Common Terms We can factor out the common term \( x(1-x) \): \[ 2I = \int_{0}^{1} x (1-x) \left[ x^{n-1} + (1-x)^{n-1} \right] \, dx \] ### Step 5: Evaluate the Integral Now, we can evaluate the integral: \[ I = \frac{1}{2} \int_{0}^{1} x (1-x) \left[ x^{n-1} + (1-x)^{n-1} \right] \, dx \] Using the formula for the integral of \( x^m (1-x)^n \): \[ \int_{0}^{1} x^{m} (1-x)^{n} \, dx = \frac{m! n!}{(m+n+1)!} \] we can evaluate: 1. For \( x^{n} (1-x) \): \[ \int_{0}^{1} x^{n} (1-x) \, dx = \frac{n! 1!}{(n+2)!} = \frac{1}{(n+1)(n+2)} \] 2. For \( x (1-x)^{n} \): \[ \int_{0}^{1} x (1-x)^{n} \, dx = \frac{1! n!}{(n+2)!} = \frac{1}{(n+1)(n+2)} \] ### Step 6: Combine Results Thus, we have: \[ 2I = \frac{1}{(n+1)(n+2)} + \frac{1}{(n+1)(n+2)} = \frac{2}{(n+1)(n+2)} \] So, \[ I = \frac{1}{(n+1)(n+2)} \] ### Final Answer The value of the integral is: \[ \boxed{\frac{1}{(n+1)(n+2)}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (3) (Multiple Choice Questions)|38 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

The value of the integral l = int_(0)^(1) x(1-x)^(n) dx is

If f(x)-3cos(tan^(-1)x) , then the value of the integral int_(0)^(1)xf''(x)dx is

The value of the integral int_(0)^(oo)(1)/(1+x^(4))dx is

The value of the integral int _(0)^(2) | x^(2)-1| dx is

The value of the integral int_(0)^(1) e^(x^(2))dx lies in the integral

The value of the integral int_(-1)^(1) (x-[2x]) dx,is

By Simpson rule taking n=4, the value of the integral int _(0)^(1)(1)/(1+x^(2))dx is equal to

For any n in R^(+) , the value of the integral int_(0)^(n[x]) (x-[x])dx is

The value of the integral int_(0)^(1)(x^(3))/(1+x^(8))dx is

The value of the integral int_(0)^(1) cot^(-1) (1-x+x^(2))dx , is

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (2) (Multiple Choice Questions)
  1. int(0)^(pi) x f (sin x)dx=

    Text Solution

    |

  2. Evaluate int0 ^oo log(x+1/x) dx / (1+x^2)

    Text Solution

    |

  3. int(0)^(pi//2) [2log sin x-log sin 2x] dx=

    Text Solution

    |

  4. If int(0)^(pi) x f(sin x)dx= k int(0)^(pi//2) f(sin x) dx then the val...

    Text Solution

    |

  5. For n gt 0 int(0)^(2pi)(x sin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx= ….

    Text Solution

    |

  6. int(0)^(pi//2) (sin^(2)x)/(sin x+cos x) dx is equal to

    Text Solution

    |

  7. The value of the integral int(0)^(1) x (1-x)^(n) dx is

    Text Solution

    |

  8. If int(0)^(1) x^(m) (1-x)^(n) dx= R int(0)^(1) x^(n) (1-x)^(m) dx, the...

    Text Solution

    |

  9. If I= int(0)^(1) (e^(t))/(1+t) dt, then p= int(0)^(1) e^(t) log (1+t) ...

    Text Solution

    |

  10. int(0)^(pi//2n) (dx)/(1+ cot^(n) nx) is equal to

    Text Solution

    |

  11. The value of the integral underset(0)overset(1)int cot^(-1) (1-x+x^...

    Text Solution

    |

  12. int(0)^(1) tan^(-1) (1-x+x^(2)) dx=

    Text Solution

    |

  13. int(0)^(pi//2) (cos x dx)/(1+ cos x +sin x)=

    Text Solution

    |

  14. Let I= int(0)^(pi//2) (dx)/(1+sin x') then int(0)^(pi) (x^(2) cos x)/(...

    Text Solution

    |

  15. a(n) = int(0)^(pi//2) (sin^(2) nx)/(sin x)dx, then a(2)-a(1), a(3)-a(2...

    Text Solution

    |

  16. If f(x) and g(x) are continuous functions satisfying f(x)= f(a-x) and ...

    Text Solution

    |

  17. If f (x) is monotonic differentiable function on [a,b] then int(a)^(b)...

    Text Solution

    |

  18. Let T >0 be a fixed real number. Suppose f is continuous function such...

    Text Solution

    |

  19. If lim(t to a) (int(a)^(t) f(t)dt-(t-a)/2 (f(t) -f(a)))/(t-a)^(3)= 0, ...

    Text Solution

    |

  20. If f(y)= e^(y), g(y)= y, y gt 0 and F(t) = int(0)^(t) f(t-y) g(y) dy, ...

    Text Solution

    |