Home
Class 12
MATHS
If int(0)^(1) x^(m) (1-x)^(n) dx= R int(...

If `int_(0)^(1) x^(m) (1-x)^(n) dx= R int_(0)^(1) x^(n) (1-x)^(m) dx`, then

A

R=1

B

`R= -1`

C

`R= 1//2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \int_{0}^{1} x^{m} (1-x)^{n} \, dx = R \int_{0}^{1} x^{n} (1-x)^{m} \, dx, \] we will follow these steps: ### Step 1: Use the property of definite integrals We know that \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a-x) \, dx. \] In our case, we can apply this property to the left-hand side integral: \[ \int_{0}^{1} x^{m} (1-x)^{n} \, dx = \int_{0}^{1} (1-x)^{n} x^{m} \, dx. \] ### Step 2: Change the variable Now, we can change the variable in the integral: Let \( u = 1 - x \). Then, \( du = -dx \) and the limits change from \( x = 0 \) to \( x = 1 \) to \( u = 1 \) to \( u = 0 \). Thus, \[ \int_{0}^{1} x^{m} (1-x)^{n} \, dx = \int_{1}^{0} (1-u)^{m} u^{n} (-du) = \int_{0}^{1} (1-u)^{m} u^{n} \, du. \] ### Step 3: Write the integral in terms of \( n \) and \( m \) This means we can express the left-hand side as: \[ \int_{0}^{1} (1-x)^{m} x^{n} \, dx. \] ### Step 4: Equate the two integrals Now we have: \[ \int_{0}^{1} x^{m} (1-x)^{n} \, dx = \int_{0}^{1} (1-x)^{m} x^{n} \, dx. \] ### Step 5: Set up the equation Thus, we can rewrite our original equation as: \[ \int_{0}^{1} x^{m} (1-x)^{n} \, dx = R \int_{0}^{1} x^{n} (1-x)^{m} \, dx. \] ### Step 6: Compare the two sides Since both integrals are equal, we can conclude that: \[ 1 = R. \] ### Conclusion Therefore, the value of \( R \) is: \[ R = 1. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (3) (Multiple Choice Questions)|38 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) x (1 -x)^(n) dx=?

evaluate int_(0)^(1)x^(2)(1-x)^(n)dx

U_(n)=int_(0)^(1)x^(n)(2-x)^(n)dx and V_(n)=int_(0)^(1)x^(n)(1-x)^(n)dx,n in N and if (V_(n))/(U_(n))=1024, then the value of n is

If I(m,n)=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx, then

If mgt0, ngt0 , the definite integral I=int_0^1 x^(m-1)(1-x)^(n-1)dx depends upon the values of m and n is denoted by beta(m,n) , called the beta function.For example, int_0^1 x^3 (1-x)^4dx=int_0^1 x^(4-1) (1-x)^(5-1) dx=beta(4,5) and int_0^1 x^(3/2) (1-x)^((-1)/2)dx=int_0^1 x^(5/2-1) (1-x)^(1/2-1)dx=beta(5/2,1/2) .Obviously, beta(n,m)=beta(m,n) .Now answer the question:If int_0^oo x^(m-1)/(1+x)^(m+n)dx=k int_0^oo x^(n-1)/(1+x)^(m+n)dx , then k is equal to (A) m/n (B) 1 (C) n/m (D) none of these

int_(0)^(1)(1-x^(3))^(n)dx=

If m gt 0, n gt 0 , the definite integral l=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx depends upon the vlaues of m and n and is denoted by beta(m,n) , called the beta function. E.g. int_(0)^(1)x^(4)(1-x)^(5)dx=int_(0)^(1)x^(5-1)(1-x)^(6-1)dx=beta(5, 6) and int_(0)^(1)x^(5//2)(1-x)^(-1//2)dx=int_(0)^(1)x^(7//2-1)(1-x)^(1//2-1)dx=beta((7)/(2),(1)/(2)) . Obviously, beta(n, m)=beta(m, n) . If int_(0)^(n)(1-(x)/(n))^(n)x^(k-1)dx=R beta(k, n+1) , then R is equal to

If m gt 0, n gt 0 , the definite integral l=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx depends upon the vlaues of m and n and is denoted by beta(m,n) , called the beta function. E.g. int_(0)^(1)x^(4)(1-x)^(5)dx=int_(0)^(1)x^(5-1)(1-x)^(6-1)dx=beta(5, 6) and int_(0)^(1)x^(5//2)(1-x)^(-1//2)dx=int_(0)^(1)x^(7//2-1)(1-x)^(1//2-1)dx=beta((7)/(2),(1)/(2)) . Obviously, beta(n, m)=beta(m, n) . The integral int_(0)^(pi//2)cos^(2m)theta sin^(2n) theta d theta is equal to

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (2) (Multiple Choice Questions)
  1. int(0)^(pi) x f (sin x)dx=

    Text Solution

    |

  2. Evaluate int0 ^oo log(x+1/x) dx / (1+x^2)

    Text Solution

    |

  3. int(0)^(pi//2) [2log sin x-log sin 2x] dx=

    Text Solution

    |

  4. If int(0)^(pi) x f(sin x)dx= k int(0)^(pi//2) f(sin x) dx then the val...

    Text Solution

    |

  5. For n gt 0 int(0)^(2pi)(x sin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx= ….

    Text Solution

    |

  6. int(0)^(pi//2) (sin^(2)x)/(sin x+cos x) dx is equal to

    Text Solution

    |

  7. The value of the integral int(0)^(1) x (1-x)^(n) dx is

    Text Solution

    |

  8. If int(0)^(1) x^(m) (1-x)^(n) dx= R int(0)^(1) x^(n) (1-x)^(m) dx, the...

    Text Solution

    |

  9. If I= int(0)^(1) (e^(t))/(1+t) dt, then p= int(0)^(1) e^(t) log (1+t) ...

    Text Solution

    |

  10. int(0)^(pi//2n) (dx)/(1+ cot^(n) nx) is equal to

    Text Solution

    |

  11. The value of the integral underset(0)overset(1)int cot^(-1) (1-x+x^...

    Text Solution

    |

  12. int(0)^(1) tan^(-1) (1-x+x^(2)) dx=

    Text Solution

    |

  13. int(0)^(pi//2) (cos x dx)/(1+ cos x +sin x)=

    Text Solution

    |

  14. Let I= int(0)^(pi//2) (dx)/(1+sin x') then int(0)^(pi) (x^(2) cos x)/(...

    Text Solution

    |

  15. a(n) = int(0)^(pi//2) (sin^(2) nx)/(sin x)dx, then a(2)-a(1), a(3)-a(2...

    Text Solution

    |

  16. If f(x) and g(x) are continuous functions satisfying f(x)= f(a-x) and ...

    Text Solution

    |

  17. If f (x) is monotonic differentiable function on [a,b] then int(a)^(b)...

    Text Solution

    |

  18. Let T >0 be a fixed real number. Suppose f is continuous function such...

    Text Solution

    |

  19. If lim(t to a) (int(a)^(t) f(t)dt-(t-a)/2 (f(t) -f(a)))/(t-a)^(3)= 0, ...

    Text Solution

    |

  20. If f(y)= e^(y), g(y)= y, y gt 0 and F(t) = int(0)^(t) f(t-y) g(y) dy, ...

    Text Solution

    |