Home
Class 12
MATHS
If I= int(0)^(1) (e^(t))/(1+t) dt, then ...

If `I= int_(0)^(1) (e^(t))/(1+t) dt`, then `p= int_(0)^(1) e^(t) log (1+t) dt`=

A

I

B

2I

C

`e log 2-I`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( p = \int_0^1 e^t \log(1+t) \, dt \) in terms of \( I = \int_0^1 \frac{e^t}{1+t} \, dt \). ### Step-by-Step Solution: 1. **Define the Integral**: We start with the integral we want to evaluate: \[ p = \int_0^1 e^t \log(1+t) \, dt \] 2. **Integration by Parts**: We will use integration by parts, where we let: - \( u = \log(1+t) \) (first function) - \( dv = e^t \, dt \) (second function) Then, we need to find \( du \) and \( v \): - Differentiate \( u \): \[ du = \frac{1}{1+t} \, dt \] - Integrate \( dv \): \[ v = e^t \] 3. **Apply Integration by Parts Formula**: The integration by parts formula is: \[ \int u \, dv = uv - \int v \, du \] Applying this to our integral: \[ p = \left[ \log(1+t) \cdot e^t \right]_0^1 - \int_0^1 e^t \cdot \frac{1}{1+t} \, dt \] 4. **Evaluate the Boundary Terms**: Now we evaluate the boundary terms: - At \( t = 1 \): \[ \log(1+1) \cdot e^1 = \log(2) \cdot e \] - At \( t = 0 \): \[ \log(1+0) \cdot e^0 = \log(1) \cdot 1 = 0 \] Therefore, the boundary terms give: \[ \left[ \log(1+t) \cdot e^t \right]_0^1 = e \log(2) - 0 = e \log(2) \] 5. **Substitute Back into the Integral**: Now substituting back into our expression for \( p \): \[ p = e \log(2) - \int_0^1 \frac{e^t}{1+t} \, dt \] Notice that the remaining integral is exactly \( I \): \[ p = e \log(2) - I \] ### Final Expression: Thus, we have: \[ p = e \log(2) - I \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (3) (Multiple Choice Questions)|38 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

If k=int_(0)^(1) (e^(t))/(1+t)dt , then int_(0)^(1) e^(t)log_(e )(1+t)dt is equal to

If lambda=int_(0)^(1)(e^(t))/(1+t), then int_(0)^(1)e^(t)log_(e)(1+t)dt is equal to

If int_(0)^(1)(e^(t))/(t+1)dt=a, then int_(b-1)^(b)(e^(-t))/(t-b-1)dt=

int_(0)^(1)t^(2)sqrt(1-t)*dt

Let A = int_(0)^(1)(e^(t))/(1+t) dt , then int_(a-1)^(a)(e^(-1))/(t-a-1) dt has the value :

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

If int_(0)^(1)(e^(t))/(1+t)dt=a, then find the value of int_(0)^(1)(e^(t))/((1+t)^(2))dt in terms of a

If rArr int_(0)^(1) (e^(-t))/(t+1) dt =a, "then"int_(b-1)^(b) (e^(-1))/(t-b-1)dt is equal to

If int_(0)^(1)(e^(t)dt)/(t+1)=a, then evaluate int_(b-1)^(b)(e^(t)dt)/(t-b-1)

2int_(0)^(t)(1-cos t)/(t)dt

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (2) (Multiple Choice Questions)
  1. int(0)^(pi) x f (sin x)dx=

    Text Solution

    |

  2. Evaluate int0 ^oo log(x+1/x) dx / (1+x^2)

    Text Solution

    |

  3. int(0)^(pi//2) [2log sin x-log sin 2x] dx=

    Text Solution

    |

  4. If int(0)^(pi) x f(sin x)dx= k int(0)^(pi//2) f(sin x) dx then the val...

    Text Solution

    |

  5. For n gt 0 int(0)^(2pi)(x sin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx= ….

    Text Solution

    |

  6. int(0)^(pi//2) (sin^(2)x)/(sin x+cos x) dx is equal to

    Text Solution

    |

  7. The value of the integral int(0)^(1) x (1-x)^(n) dx is

    Text Solution

    |

  8. If int(0)^(1) x^(m) (1-x)^(n) dx= R int(0)^(1) x^(n) (1-x)^(m) dx, the...

    Text Solution

    |

  9. If I= int(0)^(1) (e^(t))/(1+t) dt, then p= int(0)^(1) e^(t) log (1+t) ...

    Text Solution

    |

  10. int(0)^(pi//2n) (dx)/(1+ cot^(n) nx) is equal to

    Text Solution

    |

  11. The value of the integral underset(0)overset(1)int cot^(-1) (1-x+x^...

    Text Solution

    |

  12. int(0)^(1) tan^(-1) (1-x+x^(2)) dx=

    Text Solution

    |

  13. int(0)^(pi//2) (cos x dx)/(1+ cos x +sin x)=

    Text Solution

    |

  14. Let I= int(0)^(pi//2) (dx)/(1+sin x') then int(0)^(pi) (x^(2) cos x)/(...

    Text Solution

    |

  15. a(n) = int(0)^(pi//2) (sin^(2) nx)/(sin x)dx, then a(2)-a(1), a(3)-a(2...

    Text Solution

    |

  16. If f(x) and g(x) are continuous functions satisfying f(x)= f(a-x) and ...

    Text Solution

    |

  17. If f (x) is monotonic differentiable function on [a,b] then int(a)^(b)...

    Text Solution

    |

  18. Let T >0 be a fixed real number. Suppose f is continuous function such...

    Text Solution

    |

  19. If lim(t to a) (int(a)^(t) f(t)dt-(t-a)/2 (f(t) -f(a)))/(t-a)^(3)= 0, ...

    Text Solution

    |

  20. If f(y)= e^(y), g(y)= y, y gt 0 and F(t) = int(0)^(t) f(t-y) g(y) dy, ...

    Text Solution

    |