Home
Class 12
MATHS
int(0)^(1) tan^(-1) (1-x+x^(2)) dx=...

`int_(0)^(1) tan^(-1) (1-x+x^(2)) dx`=

A

log 2

B

log `(1)/(2)`

C

`pi log 2`

D

`(pi)/(2) "log" (1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1} \tan^{-1}(1 - x + x^2) \, dx \), we can follow these steps: ### Step 1: Set up the integral We start with the integral: \[ I = \int_{0}^{1} \tan^{-1}(1 - x + x^2) \, dx \] ### Step 2: Use the identity for \(\tan^{-1}\) We can use the identity: \[ \tan^{-1}(x) + \cot^{-1}(x) = \frac{\pi}{2} \] This allows us to write: \[ \tan^{-1}(1 - x + x^2) = \frac{\pi}{2} - \cot^{-1}(1 - x + x^2) \] ### Step 3: Rewrite the integral Substituting this into our integral gives: \[ I = \int_{0}^{1} \left( \frac{\pi}{2} - \cot^{-1}(1 - x + x^2) \right) \, dx \] This simplifies to: \[ I = \frac{\pi}{2} \cdot 1 - \int_{0}^{1} \cot^{-1}(1 - x + x^2) \, dx \] \[ I = \frac{\pi}{2} - J \] where \( J = \int_{0}^{1} \cot^{-1}(1 - x + x^2) \, dx \). ### Step 4: Change of variable for \( J \) Now, we can use the property of integrals: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] Setting \( x = 1 - u \), we have: \[ J = \int_{0}^{1} \cot^{-1}(1 - (1 - u) + (1 - u)^2) \, du \] This simplifies to: \[ J = \int_{0}^{1} \cot^{-1}(u + u^2) \, du \] ### Step 5: Combine \( I \) and \( J \) Now we have: \[ I = \frac{\pi}{2} - J \] and since \( J \) has the same form as \( I \), we can conclude that: \[ I + J = \frac{\pi}{2} \] Thus: \[ 2I = \frac{\pi}{2} \implies I = \frac{\pi}{4} \] ### Step 6: Final result Therefore, the value of the integral is: \[ I = \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (3) (Multiple Choice Questions)|38 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(x)tan^(-1)(1-x+x^(2))dx

int_(0)^(1)x tan^(-1)x dx=

int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx

Evaluate int_(0)^(1)tan^(-1)((1)/(1-x+x^(2)))dx

If int_(0)^(1) cot^(-1)(1-x-x^(2))dx=k int_(0)^(1) tan^(-1)x dx , then k=

int_(0)^(1)(tan^(-1)x)^2/(1+x^(2))dx

int_(0)^(oo)(tan^(-1)x)/(1+x^(2))dx

Evaluate the following : int_(0)^(1)tan^(-1)((2x)/(1-x^(2)))dx

int_(0)^(1)Tan^(-1)((2x)/(1-x^(2)))dx=

Evaluate int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (2) (Multiple Choice Questions)
  1. int(0)^(pi) x f (sin x)dx=

    Text Solution

    |

  2. Evaluate int0 ^oo log(x+1/x) dx / (1+x^2)

    Text Solution

    |

  3. int(0)^(pi//2) [2log sin x-log sin 2x] dx=

    Text Solution

    |

  4. If int(0)^(pi) x f(sin x)dx= k int(0)^(pi//2) f(sin x) dx then the val...

    Text Solution

    |

  5. For n gt 0 int(0)^(2pi)(x sin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx= ….

    Text Solution

    |

  6. int(0)^(pi//2) (sin^(2)x)/(sin x+cos x) dx is equal to

    Text Solution

    |

  7. The value of the integral int(0)^(1) x (1-x)^(n) dx is

    Text Solution

    |

  8. If int(0)^(1) x^(m) (1-x)^(n) dx= R int(0)^(1) x^(n) (1-x)^(m) dx, the...

    Text Solution

    |

  9. If I= int(0)^(1) (e^(t))/(1+t) dt, then p= int(0)^(1) e^(t) log (1+t) ...

    Text Solution

    |

  10. int(0)^(pi//2n) (dx)/(1+ cot^(n) nx) is equal to

    Text Solution

    |

  11. The value of the integral underset(0)overset(1)int cot^(-1) (1-x+x^...

    Text Solution

    |

  12. int(0)^(1) tan^(-1) (1-x+x^(2)) dx=

    Text Solution

    |

  13. int(0)^(pi//2) (cos x dx)/(1+ cos x +sin x)=

    Text Solution

    |

  14. Let I= int(0)^(pi//2) (dx)/(1+sin x') then int(0)^(pi) (x^(2) cos x)/(...

    Text Solution

    |

  15. a(n) = int(0)^(pi//2) (sin^(2) nx)/(sin x)dx, then a(2)-a(1), a(3)-a(2...

    Text Solution

    |

  16. If f(x) and g(x) are continuous functions satisfying f(x)= f(a-x) and ...

    Text Solution

    |

  17. If f (x) is monotonic differentiable function on [a,b] then int(a)^(b)...

    Text Solution

    |

  18. Let T >0 be a fixed real number. Suppose f is continuous function such...

    Text Solution

    |

  19. If lim(t to a) (int(a)^(t) f(t)dt-(t-a)/2 (f(t) -f(a)))/(t-a)^(3)= 0, ...

    Text Solution

    |

  20. If f(y)= e^(y), g(y)= y, y gt 0 and F(t) = int(0)^(t) f(t-y) g(y) dy, ...

    Text Solution

    |