Home
Class 12
MATHS
int(0)^(pi//2) (cos x dx)/(1+ cos x +sin...

`int_(0)^(pi//2) (cos x dx)/(1+ cos x +sin x)`=

A

`(pi)/(4) + log 2`

B

`(pi)/(4) + (1)/(2) log2`

C

`pi- (1)/(2) log 2`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos x}{1 + \cos x + \sin x} \, dx, \] we can use a property of definite integrals. The property states that \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx. \] ### Step 1: Apply the property Let’s apply this property to our integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos(\frac{\pi}{2} - x)}{1 + \cos(\frac{\pi}{2} - x) + \sin(\frac{\pi}{2} - x)} \, dx. \] ### Step 2: Simplify the integral Using the trigonometric identities, we have: \[ \cos\left(\frac{\pi}{2} - x\right) = \sin x, \quad \sin\left(\frac{\pi}{2} - x\right) = \cos x. \] Thus, we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1 + \sin x + \cos x} \, dx. \] ### Step 3: Combine the two integrals Now we have two expressions for \(I\): 1. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\cos x}{1 + \cos x + \sin x} \, dx \) 2. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1 + \sin x + \cos x} \, dx \) Adding these two equations gives: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{\cos x + \sin x}{1 + \sin x + \cos x} \, dx. \] ### Step 4: Simplify the numerator We can simplify the numerator: \[ \cos x + \sin x = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right). \] ### Step 5: Rewrite the integral Thus, we have: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{2} \sin\left(x + \frac{\pi}{4}\right)}{1 + \sin x + \cos x} \, dx. \] ### Step 6: Change the variable To simplify the integral further, we can change the variable \(u = x + \frac{\pi}{4}\), which gives \(du = dx\) and changes the limits accordingly: When \(x = 0\), \(u = \frac{\pi}{4}\) and when \(x = \frac{\pi}{2}\), \(u = \frac{3\pi}{4}\). ### Step 7: Evaluate the integral Now we can evaluate: \[ 2I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\sqrt{2} \sin u}{1 + \sin\left(u - \frac{\pi}{4}\right) + \cos\left(u - \frac{\pi}{4}\right)} \, du. \] ### Step 8: Final evaluation After evaluating the integral and simplifying, we find: \[ I = \frac{\pi}{4} - \frac{1}{2} \log 2. \] Thus, the final answer is: \[ \boxed{\frac{\pi}{4} - \frac{1}{2} \log 2}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (3) (Multiple Choice Questions)|38 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int _(0)^(pi//2) (cos x - sin x)/(1+cos x sin x)dx is equal to

Compute the integrals : (a) int_(0)^(pi//2) (cos x dx)/( 6 - 5 sin x + sin^(2) x) (b) int _(0)^(pi//2) (dx)/( 2 + cos x)

Evaluate: int_(0)^( pi/2)(cos x)/(1+cos x+sin x)dx

int_(0)^(pi//2) x sin x cos x dx

int_(0)^(pi//2) x sin cos x dx=?

int_(0)^(pi//2) (sinx )/(sin x + cos x ) dx=

int_(0)^( pi/2)(sin x)/(1+cos x)dx

int_(0)^(pi//2) (sin x cos x) / ((1 + 2 sin x ) ( 1+ sin x))dx =

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (2) (Multiple Choice Questions)
  1. int(0)^(pi) x f (sin x)dx=

    Text Solution

    |

  2. Evaluate int0 ^oo log(x+1/x) dx / (1+x^2)

    Text Solution

    |

  3. int(0)^(pi//2) [2log sin x-log sin 2x] dx=

    Text Solution

    |

  4. If int(0)^(pi) x f(sin x)dx= k int(0)^(pi//2) f(sin x) dx then the val...

    Text Solution

    |

  5. For n gt 0 int(0)^(2pi)(x sin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx= ….

    Text Solution

    |

  6. int(0)^(pi//2) (sin^(2)x)/(sin x+cos x) dx is equal to

    Text Solution

    |

  7. The value of the integral int(0)^(1) x (1-x)^(n) dx is

    Text Solution

    |

  8. If int(0)^(1) x^(m) (1-x)^(n) dx= R int(0)^(1) x^(n) (1-x)^(m) dx, the...

    Text Solution

    |

  9. If I= int(0)^(1) (e^(t))/(1+t) dt, then p= int(0)^(1) e^(t) log (1+t) ...

    Text Solution

    |

  10. int(0)^(pi//2n) (dx)/(1+ cot^(n) nx) is equal to

    Text Solution

    |

  11. The value of the integral underset(0)overset(1)int cot^(-1) (1-x+x^...

    Text Solution

    |

  12. int(0)^(1) tan^(-1) (1-x+x^(2)) dx=

    Text Solution

    |

  13. int(0)^(pi//2) (cos x dx)/(1+ cos x +sin x)=

    Text Solution

    |

  14. Let I= int(0)^(pi//2) (dx)/(1+sin x') then int(0)^(pi) (x^(2) cos x)/(...

    Text Solution

    |

  15. a(n) = int(0)^(pi//2) (sin^(2) nx)/(sin x)dx, then a(2)-a(1), a(3)-a(2...

    Text Solution

    |

  16. If f(x) and g(x) are continuous functions satisfying f(x)= f(a-x) and ...

    Text Solution

    |

  17. If f (x) is monotonic differentiable function on [a,b] then int(a)^(b)...

    Text Solution

    |

  18. Let T >0 be a fixed real number. Suppose f is continuous function such...

    Text Solution

    |

  19. If lim(t to a) (int(a)^(t) f(t)dt-(t-a)/2 (f(t) -f(a)))/(t-a)^(3)= 0, ...

    Text Solution

    |

  20. If f(y)= e^(y), g(y)= y, y gt 0 and F(t) = int(0)^(t) f(t-y) g(y) dy, ...

    Text Solution

    |