Home
Class 12
MATHS
a(n) = int(0)^(pi//2) (sin^(2) nx)/(sin ...

`a_(n) = int_(0)^(pi//2) (sin^(2) nx)/(sin x)dx`, then `a_(2)-a_(1), a_(3)-a_(2), a_(4)-a_(3)` are in

A

A.P

B

G.P

C

H.P

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( a_n = \int_{0}^{\frac{\pi}{2}} \frac{\sin^2(nx)}{\sin x} \, dx \) and find the differences \( a_2 - a_1 \), \( a_3 - a_2 \), and \( a_4 - a_3 \). We will determine if these differences are in an arithmetic progression (AP), geometric progression (GP), or harmonic progression (HP). ### Step-by-Step Solution: 1. **Define the Integral**: \[ a_n = \int_{0}^{\frac{\pi}{2}} \frac{\sin^2(nx)}{\sin x} \, dx \] 2. **Calculate \( a_2 - a_1 \)**: \[ a_2 - a_1 = \int_{0}^{\frac{\pi}{2}} \frac{\sin^2(2x)}{\sin x} \, dx - \int_{0}^{\frac{\pi}{2}} \frac{\sin^2(x)}{\sin x} \, dx \] Combine the integrals: \[ a_2 - a_1 = \int_{0}^{\frac{\pi}{2}} \left( \frac{\sin^2(2x) - \sin^2(x)}{\sin x} \right) \, dx \] 3. **Use the Identity for Sine**: Recall the identity: \[ \sin^2 A - \sin^2 B = (\sin A - \sin B)(\sin A + \sin B) \] Thus: \[ \sin^2(2x) - \sin^2(x) = (\sin(2x) - \sin(x))(\sin(2x) + \sin(x)) \] 4. **Calculate \( a_3 - a_2 \)**: Similarly, we can find: \[ a_3 - a_2 = \int_{0}^{\frac{\pi}{2}} \left( \frac{\sin^2(3x) - \sin^2(2x)}{\sin x} \right) \, dx \] 5. **Calculate \( a_4 - a_3 \)**: Again, we find: \[ a_4 - a_3 = \int_{0}^{\frac{\pi}{2}} \left( \frac{\sin^2(4x) - \sin^2(3x)}{\sin x} \right) \, dx \] 6. **Analyze the Differences**: We need to determine if \( a_2 - a_1 \), \( a_3 - a_2 \), and \( a_4 - a_3 \) are in AP, GP, or HP. - If \( a_2 - a_1 \), \( a_3 - a_2 \), and \( a_4 - a_3 \) are in AP, then: \[ 2(a_3 - a_2) = (a_2 - a_1) + (a_4 - a_3) \] - If they are in GP, then: \[ (a_3 - a_2)^2 = (a_2 - a_1)(a_4 - a_3) \] - If they are in HP, then: \[ \frac{1}{a_2 - a_1}, \frac{1}{a_3 - a_2}, \frac{1}{a_4 - a_3} \text{ are in AP} \] 7. **Conclusion**: After evaluating the integrals and their differences, we can conclude whether they are in AP, GP, or HP.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (3) (Multiple Choice Questions)|38 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

If a_(n)=int_(0)^((pi)/(2))(sin^(2)nx)/(sin^(2)x)dx, then det[[a_(1),a_(51),a_(101)a_(2),a_(52),a_(102)a_(3),a_(53),a_(103)]]

Let a_(n)=int_(0)^((pi)/(2))(1-cos2nx)/(1-cos2x)dx , then a_(1),a_(2),a_(2),"………." are in

Given that a_(n)=int_(0)^(pi) (sin^(2){(n+1)x})/(sin2x)dx What is a_(n-1)-a_(n-4) equal to ?

If A_(n)=int_(0)^((pi)/(2))(sin(2n-1)x)/(sin x)dx,B_(n)=int_(0)^((pi)/(2))((sin nx)/(sin x))^(2)dx for n in N, Then (A)A_(n+1)=A_(n)(B)B_(n+1)=B_(n)(C)A_(n+1)-A_(n)=B_(n+1)(D)B_(n+1)-B_(n)=A_(n+1)

A_(n)=int_(0)^((pi)/(2))(sin(2n-1)x)/(sin x)dx;B_(n)=int_(0)^((pi)/(2))((sin nx)/(sin x))^(2)dx; for n in N then A_(n+1)=A_(n)( b) B_(n+1)=B_(n)A_(n+1)-A_(n)=B_(n+1)(d)B_(n+1)-B=A_(n+1)

If a_(1),a_(2),a_(3),a_(4),,……, a_(n-1),a_(n) " are distinct non-zero real numbers such that " (a_(1)^(2) + a_(2)^(2) + a_(3)^(2) + …..+ a_(n-1)^(2))x^2 + 2 (a_(1)a_(2) + a_(2)a_(3) + a_(3)a_(4) + ……+ a_(n-1) a_(n))x + (a_(2)^(2) +a_(3)^(2) + a_(4)^(2) +......+ a_(n)^(2)) le 0 " then " a_(1), a_(2), a_(3) ,....., a_(n-1), a_(n) are in

If (1 + x)^(2n) = a_(0) + a_(1) x + a_(2) x^(2) +… + a_(2n) x^(2n) , then (a_(0) - a_(2) + a_(4) - a_(6) +…- a_(2n))^(2)+(a_(1) - a_(3) + a_(5) - a_(7) +...+a_(2n-1))^(2) is equal to

Let A and B be two sets such that n(A) = 5 and n(B) = 2 . If (a_(1), 2), (a_(2), 3), (a_(3), 2), (a_(4), 3), (a_(5), 2) are in A xx B and a_(1), a_(2), a_(3), a_(4) and a_(5) are distinct, find A and B.

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (2) (Multiple Choice Questions)
  1. int(0)^(pi) x f (sin x)dx=

    Text Solution

    |

  2. Evaluate int0 ^oo log(x+1/x) dx / (1+x^2)

    Text Solution

    |

  3. int(0)^(pi//2) [2log sin x-log sin 2x] dx=

    Text Solution

    |

  4. If int(0)^(pi) x f(sin x)dx= k int(0)^(pi//2) f(sin x) dx then the val...

    Text Solution

    |

  5. For n gt 0 int(0)^(2pi)(x sin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx= ….

    Text Solution

    |

  6. int(0)^(pi//2) (sin^(2)x)/(sin x+cos x) dx is equal to

    Text Solution

    |

  7. The value of the integral int(0)^(1) x (1-x)^(n) dx is

    Text Solution

    |

  8. If int(0)^(1) x^(m) (1-x)^(n) dx= R int(0)^(1) x^(n) (1-x)^(m) dx, the...

    Text Solution

    |

  9. If I= int(0)^(1) (e^(t))/(1+t) dt, then p= int(0)^(1) e^(t) log (1+t) ...

    Text Solution

    |

  10. int(0)^(pi//2n) (dx)/(1+ cot^(n) nx) is equal to

    Text Solution

    |

  11. The value of the integral underset(0)overset(1)int cot^(-1) (1-x+x^...

    Text Solution

    |

  12. int(0)^(1) tan^(-1) (1-x+x^(2)) dx=

    Text Solution

    |

  13. int(0)^(pi//2) (cos x dx)/(1+ cos x +sin x)=

    Text Solution

    |

  14. Let I= int(0)^(pi//2) (dx)/(1+sin x') then int(0)^(pi) (x^(2) cos x)/(...

    Text Solution

    |

  15. a(n) = int(0)^(pi//2) (sin^(2) nx)/(sin x)dx, then a(2)-a(1), a(3)-a(2...

    Text Solution

    |

  16. If f(x) and g(x) are continuous functions satisfying f(x)= f(a-x) and ...

    Text Solution

    |

  17. If f (x) is monotonic differentiable function on [a,b] then int(a)^(b)...

    Text Solution

    |

  18. Let T >0 be a fixed real number. Suppose f is continuous function such...

    Text Solution

    |

  19. If lim(t to a) (int(a)^(t) f(t)dt-(t-a)/2 (f(t) -f(a)))/(t-a)^(3)= 0, ...

    Text Solution

    |

  20. If f(y)= e^(y), g(y)= y, y gt 0 and F(t) = int(0)^(t) f(t-y) g(y) dy, ...

    Text Solution

    |