Home
Class 12
MATHS
If f(y)= e^(y), g(y)= y, y gt 0 and F(t)...

If `f(y)= e^(y), g(y)= y, y gt 0 and F(t) = int_(0)^(t) f(t-y) g(y) dy`, then F(t)=

A

`1-e^(-t) (1+t)`

B

`e^(t) - (1+t)`

C

`t e^(t)`

D

`t e^(-t)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( F(t) = \int_0^t f(t-y) g(y) \, dy \) where \( f(y) = e^y \) and \( g(y) = y \). ### Step-by-Step Solution: 1. **Substituting the Functions**: We know that \( f(t-y) = e^{t-y} \) and \( g(y) = y \). Therefore, we can rewrite the integral: \[ F(t) = \int_0^t e^{t-y} y \, dy \] 2. **Factoring Out the Constant**: Since \( e^t \) is a constant with respect to \( y \), we can factor it out of the integral: \[ F(t) = e^t \int_0^t e^{-y} y \, dy \] 3. **Integration by Parts**: We need to evaluate the integral \( \int_0^t e^{-y} y \, dy \). We will use integration by parts, where we let: - \( u = y \) (thus \( du = dy \)) - \( dv = e^{-y} dy \) (thus \( v = -e^{-y} \)) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ \int y e^{-y} \, dy = -y e^{-y} \bigg|_0^t + \int e^{-y} \, dy \] 4. **Evaluating the Boundary Terms**: Now we evaluate the boundary terms: \[ -y e^{-y} \bigg|_0^t = -t e^{-t} - (0) = -t e^{-t} \] 5. **Evaluating the Remaining Integral**: The remaining integral \( \int e^{-y} \, dy = -e^{-y} \bigg|_0^t = -e^{-t} + 1 \): \[ \int_0^t e^{-y} \, dy = 1 - e^{-t} \] 6. **Combining Results**: Now substituting back into the integration by parts result: \[ \int_0^t e^{-y} y \, dy = -t e^{-t} + (1 - e^{-t}) = 1 - (t + 1)e^{-t} \] 7. **Final Expression for \( F(t) \)**: Now substituting this back into our expression for \( F(t) \): \[ F(t) = e^t \left( 1 - (t + 1)e^{-t} \right) = e^t - (t + 1) \] ### Final Result: Thus, we have: \[ F(t) = e^t - (t + 1) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (3) (Multiple Choice Questions)|38 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

If f(y)=e^(y),g(y)=y,y>0, and F(t)=int_(0)^(t)f(t-y)g(y)dy ,then

Iff(y)=e^(y),g(y)>0, and F(t)=int_(0)^(t)t(t-y)dt, then F(t)=e^(t)-(1+t)F(t)=te^(t)F(t)=te^(-1)(d)F(t)=1-e^(t)(1+t)

If (f(x))^(g(y))=e^(f(x)-g(y)) then (dy)/(dx)=

If f(x-y), f(x) f(y), and f(x+y) are in A.P. for all x, y, and f(0) ne 0, then

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (2) (Multiple Choice Questions)
  1. int(0)^(pi) x f (sin x)dx=

    Text Solution

    |

  2. Evaluate int0 ^oo log(x+1/x) dx / (1+x^2)

    Text Solution

    |

  3. int(0)^(pi//2) [2log sin x-log sin 2x] dx=

    Text Solution

    |

  4. If int(0)^(pi) x f(sin x)dx= k int(0)^(pi//2) f(sin x) dx then the val...

    Text Solution

    |

  5. For n gt 0 int(0)^(2pi)(x sin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx= ….

    Text Solution

    |

  6. int(0)^(pi//2) (sin^(2)x)/(sin x+cos x) dx is equal to

    Text Solution

    |

  7. The value of the integral int(0)^(1) x (1-x)^(n) dx is

    Text Solution

    |

  8. If int(0)^(1) x^(m) (1-x)^(n) dx= R int(0)^(1) x^(n) (1-x)^(m) dx, the...

    Text Solution

    |

  9. If I= int(0)^(1) (e^(t))/(1+t) dt, then p= int(0)^(1) e^(t) log (1+t) ...

    Text Solution

    |

  10. int(0)^(pi//2n) (dx)/(1+ cot^(n) nx) is equal to

    Text Solution

    |

  11. The value of the integral underset(0)overset(1)int cot^(-1) (1-x+x^...

    Text Solution

    |

  12. int(0)^(1) tan^(-1) (1-x+x^(2)) dx=

    Text Solution

    |

  13. int(0)^(pi//2) (cos x dx)/(1+ cos x +sin x)=

    Text Solution

    |

  14. Let I= int(0)^(pi//2) (dx)/(1+sin x') then int(0)^(pi) (x^(2) cos x)/(...

    Text Solution

    |

  15. a(n) = int(0)^(pi//2) (sin^(2) nx)/(sin x)dx, then a(2)-a(1), a(3)-a(2...

    Text Solution

    |

  16. If f(x) and g(x) are continuous functions satisfying f(x)= f(a-x) and ...

    Text Solution

    |

  17. If f (x) is monotonic differentiable function on [a,b] then int(a)^(b)...

    Text Solution

    |

  18. Let T >0 be a fixed real number. Suppose f is continuous function such...

    Text Solution

    |

  19. If lim(t to a) (int(a)^(t) f(t)dt-(t-a)/2 (f(t) -f(a)))/(t-a)^(3)= 0, ...

    Text Solution

    |

  20. If f(y)= e^(y), g(y)= y, y gt 0 and F(t) = int(0)^(t) f(t-y) g(y) dy, ...

    Text Solution

    |