Home
Class 12
MATHS
lim(x rarr 0) (1)/(x) [int(y)^(a) e^(sin...

`lim_(x rarr 0) (1)/(x) [int_(y)^(a) e^(sin^(2)t) dt- int_(x+y)^(a) e^(sin^(2)t) dt]` is equal to

A

`e^(sin^(2)y)`

B

`sin 2ye^(sin^(2)y`

C

0

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0} \frac{1}{x} \left( \int_{y}^{a} e^{\sin^2 t} dt - \int_{x+y}^{a} e^{\sin^2 t} dt \right), \] we will follow these steps: ### Step 1: Rewrite the limit We can rewrite the limit as: \[ \lim_{x \to 0} \frac{1}{x} \left( \int_{y}^{a} e^{\sin^2 t} dt - \int_{x+y}^{a} e^{\sin^2 t} dt \right). \] ### Step 2: Combine the integrals Using properties of integrals, we can combine the two integrals: \[ \int_{y}^{a} e^{\sin^2 t} dt - \int_{x+y}^{a} e^{\sin^2 t} dt = \int_{y}^{x+y} e^{\sin^2 t} dt. \] Thus, the limit becomes: \[ \lim_{x \to 0} \frac{1}{x} \int_{y}^{x+y} e^{\sin^2 t} dt. \] ### Step 3: Apply L'Hôpital's Rule As \( x \to 0 \), both the numerator and denominator approach 0, leading to an indeterminate form \( \frac{0}{0} \). We can apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{\int_{y}^{x+y} e^{\sin^2 t} dt}{x}. \] ### Step 4: Differentiate the numerator and denominator Using the Fundamental Theorem of Calculus, we differentiate the numerator: \[ \frac{d}{dx} \left( \int_{y}^{x+y} e^{\sin^2 t} dt \right) = e^{\sin^2(x+y)} \cdot \frac{d}{dx}(x+y) = e^{\sin^2(x+y)}. \] The derivative of the denominator \( x \) is simply \( 1 \). ### Step 5: Evaluate the limit Now we have: \[ \lim_{x \to 0} e^{\sin^2(x+y)}. \] As \( x \to 0 \), this simplifies to: \[ e^{\sin^2(y)}. \] ### Final Answer Thus, the limit evaluates to: \[ e^{\sin^2 y}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

lim_ (x rarr0x rarr0) (1) / (x) [int_ (y rarr a) e ^ (sin ^ (2) t) dt-int_ (x + y rarr a) e ^ (sin ^ (2) t) dt] is

The value of lim_(x rarr oo)((int_(0)^(x+y)e^(t^(2))dt)^(2))/(int_(0)^(x+y)e^(2t^(2))dt) is equal to (i)0(ii)1 (iii) lim_(x rarr0)((int_(0)^(x)cos t^(2))/(x))-1(iv)-1

(lim)_(nvecoo)1/x[int_y^a e^(sin^2t))dt-int_(x+y)^a e^(sin^2t))dt-]i se q u a lto (0,1] (b) [1,oo) (0,oo) (d) none of these

lim_(xrarroo)((int_(0)^(x)e^(t^(2))dt)^(2))/(int_(0)^(x)e^(2t^(2))dt) is equal to

lim_ (x rarr0) (int_ (0) ^ (x) sin ^ (2) t cos tdt) / (x ^ (3))

lim_(x rarr0)((1)/(x^(5))int_(0)^(x)e^(-t^(2))dt-(1)/(x^(4))+(1)/(3x^(2)))

If k=int_(0)^(1) (e^(t))/(1+t)dt , then int_(0)^(1) e^(t)log_(e )(1+t)dt is equal to

ML KHANNA-DEFINITE INTEGRAL-Problem set (5) (Multiple Choice Questions)
  1. If f(x)= int(x^(2))^(x^(4)) sin sqrtt dt, then f'(x) equals

    Text Solution

    |

  2. Let f(x)= int(1)^(x) sqrt(2-t^(2)) dt. Then the real roots of the equa...

    Text Solution

    |

  3. lim(x rarr 0) (1)/(x) [int(y)^(a) e^(sin^(2)t) dt- int(x+y)^(a) e^(sin...

    Text Solution

    |

  4. The equation of tangent to the curve y= int(x^(2))^(x^(3)) (dt)/(sqrt(...

    Text Solution

    |

  5. If x= int(0)^(y) (dt)/(sqrt(1+9t^(2))) then (dy)/(dx) is equal to

    Text Solution

    |

  6. If f(x)= int(x)^(x^(2)) (dt)/(1+ t^(3)), then f'(2)=

    Text Solution

    |

  7. If f(x) = int(1//x^(2))^(2) cos sqrtt dt then f'(1) is equal to

    Text Solution

    |

  8. If int(sin x)^(1) t^(2) f(t) dt =1- sin x, x in (0, (pi)/(2)) then f((...

    Text Solution

    |

  9. If f(x)= int(x^(2))^(x^(3)) (dt)/(log t), x gt 0 then

    Text Solution

    |

  10. Let f:(0, oo) in R and F(x) =underset(0)overset(x) int f(t) dt. If F(x...

    Text Solution

    |

  11. If int(0)^(t^(2)) xf (x) dx= (2)/(5) t^(5), then f(4/25)=

    Text Solution

    |

  12. The integral int(0)^(2) (|x+2|)/(x+2)dx is equal to

    Text Solution

    |

  13. int(-3)^(3) (x-4)/((|x-4|))dx=

    Text Solution

    |

  14. The value of overset(sin^(2)x)underset(0)int sin^(-1)sqrt(t)dt+overs...

    Text Solution

    |

  15. If int(pi//3)^(x) sqrt(3-2sin^(2)u) du + int(0)^(y) cos t dt= 0, then ...

    Text Solution

    |

  16. The points of extremum of the function F(x)= int(1)^(x) e^(-t^(2)) (1-...

    Text Solution

    |

  17. The points of extemum of f(x)= int(0)^(x^(2)) (t^(2)- 5t +4)/(2+e^(t))...

    Text Solution

    |

  18. If int(0)^(x) f(t) dt= x + int(x)^(1) t f(t) dt, then the valeu of f(1...

    Text Solution

    |

  19. If int(0)^(t) (bx cos 4x- a sin 4x)/(x^(2)) dx= (a sin 4t)/(t)-1, wher...

    Text Solution

    |

  20. Lt(x rarr 0)(int(0)^(x^(2)) (tan^(-1) t)^(2) dt)/(int(0)^(x^(2)) (sin ...

    Text Solution

    |