Home
Class 12
MATHS
If f(x)= int(x)^(x^(2)) (dt)/(1+ t^(3)),...

If `f(x)= int_(x)^(x^(2)) (dt)/(1+ t^(3))`, then f'(2)=

A

`-(56)/(585)`

B

`-(29)/(585)`

C

`(101)/(585)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(2) \) for the function \( f(x) = \int_{x}^{x^2} \frac{dt}{1 + t^3} \), we will use the Leibniz rule for differentiating under the integral sign. ### Step 1: Differentiate \( f(x) \) Using the Leibniz rule, we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx} \left( \int_{x}^{x^2} \frac{dt}{1 + t^3} \right) = \frac{1}{1 + (x^2)^3} \cdot \frac{d}{dx}(x^2) - \frac{1}{1 + x^3} \cdot \frac{d}{dx}(x) \] ### Step 2: Calculate the derivatives of the limits The derivative of the upper limit \( x^2 \) is: \[ \frac{d}{dx}(x^2) = 2x \] The derivative of the lower limit \( x \) is: \[ \frac{d}{dx}(x) = 1 \] ### Step 3: Substitute the derivatives into the expression Substituting these derivatives back into the expression for \( f'(x) \): \[ f'(x) = \frac{1}{1 + x^6} \cdot 2x - \frac{1}{1 + x^3} \cdot 1 \] ### Step 4: Simplify the expression Now we can simplify: \[ f'(x) = \frac{2x}{1 + x^6} - \frac{1}{1 + x^3} \] ### Step 5: Evaluate \( f'(2) \) Now we substitute \( x = 2 \): \[ f'(2) = \frac{2 \cdot 2}{1 + 2^6} - \frac{1}{1 + 2^3} \] Calculating \( 2^6 \) and \( 2^3 \): \[ 2^6 = 64 \quad \text{and} \quad 2^3 = 8 \] Substituting these values: \[ f'(2) = \frac{4}{1 + 64} - \frac{1}{1 + 8} \] This simplifies to: \[ f'(2) = \frac{4}{65} - \frac{1}{9} \] ### Step 6: Find a common denominator and combine The common denominator for \( 65 \) and \( 9 \) is \( 585 \): \[ f'(2) = \frac{4 \cdot 9}{585} - \frac{1 \cdot 65}{585} = \frac{36 - 65}{585} = \frac{-29}{585} \] ### Final Answer Thus, we have: \[ f'(2) = -\frac{29}{585} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

f(x) = int_(x)^(x^(2))(e^(t))/(t)dt , then f'(t) is equal to :

If f(x)= int_(x)^(x^(2))1/((log t)^2)dt ,x ne 1 then f(x)is monotomically

If f(x)= int_(1/x^2)^(x^2)cos sqrt(t)dt , then f'(1)=

If f(x)= int_(x^2)^(x^(2) +4) e^(-t^(2) ) dt , then the function f(x) increases in

If F(x)=int_(1)^(x)(ln t)/(1+t+t^(2))dt then F(x)=-F((1)/(x))

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

ML KHANNA-DEFINITE INTEGRAL-Problem set (5) (Multiple Choice Questions)
  1. The equation of tangent to the curve y= int(x^(2))^(x^(3)) (dt)/(sqrt(...

    Text Solution

    |

  2. If x= int(0)^(y) (dt)/(sqrt(1+9t^(2))) then (dy)/(dx) is equal to

    Text Solution

    |

  3. If f(x)= int(x)^(x^(2)) (dt)/(1+ t^(3)), then f'(2)=

    Text Solution

    |

  4. If f(x) = int(1//x^(2))^(2) cos sqrtt dt then f'(1) is equal to

    Text Solution

    |

  5. If int(sin x)^(1) t^(2) f(t) dt =1- sin x, x in (0, (pi)/(2)) then f((...

    Text Solution

    |

  6. If f(x)= int(x^(2))^(x^(3)) (dt)/(log t), x gt 0 then

    Text Solution

    |

  7. Let f:(0, oo) in R and F(x) =underset(0)overset(x) int f(t) dt. If F(x...

    Text Solution

    |

  8. If int(0)^(t^(2)) xf (x) dx= (2)/(5) t^(5), then f(4/25)=

    Text Solution

    |

  9. The integral int(0)^(2) (|x+2|)/(x+2)dx is equal to

    Text Solution

    |

  10. int(-3)^(3) (x-4)/((|x-4|))dx=

    Text Solution

    |

  11. The value of overset(sin^(2)x)underset(0)int sin^(-1)sqrt(t)dt+overs...

    Text Solution

    |

  12. If int(pi//3)^(x) sqrt(3-2sin^(2)u) du + int(0)^(y) cos t dt= 0, then ...

    Text Solution

    |

  13. The points of extremum of the function F(x)= int(1)^(x) e^(-t^(2)) (1-...

    Text Solution

    |

  14. The points of extemum of f(x)= int(0)^(x^(2)) (t^(2)- 5t +4)/(2+e^(t))...

    Text Solution

    |

  15. If int(0)^(x) f(t) dt= x + int(x)^(1) t f(t) dt, then the valeu of f(1...

    Text Solution

    |

  16. If int(0)^(t) (bx cos 4x- a sin 4x)/(x^(2)) dx= (a sin 4t)/(t)-1, wher...

    Text Solution

    |

  17. Lt(x rarr 0)(int(0)^(x^(2)) (tan^(-1) t)^(2) dt)/(int(0)^(x^(2)) (sin ...

    Text Solution

    |

  18. The value of the integral overset(b)underset(a)int (|x|)/(x)dx, a lt b...

    Text Solution

    |

  19. If a lt 0 lt b, then int(a)^(b) x|x| dx=

    Text Solution

    |

  20. int (-1)^(1)| 1 - x| dx is equal to

    Text Solution

    |