Home
Class 12
MATHS
If int(sin x)^(1) t^(2) f(t) dt =1- sin ...

If `int_(sin x)^(1) t^(2) f(t) dt =1- sin x, x in (0, (pi)/(2))` then `f((1)/(sqrt3))` equal to

A

3

B

`1//3`

C

`1//sqrt3`

D

`sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f\left(\frac{1}{\sqrt{3}}\right) \) given the equation: \[ \int_{\sin x}^{1} t^{2} f(t) \, dt = 1 - \sin x, \quad x \in \left(0, \frac{\pi}{2}\right) \] ### Step 1: Differentiate both sides with respect to \( x \) We start by differentiating both sides of the equation with respect to \( x \): \[ \frac{d}{dx} \left( \int_{\sin x}^{1} t^{2} f(t) \, dt \right) = \frac{d}{dx} (1 - \sin x) \] ### Step 2: Apply Leibniz's rule for differentiation under the integral sign Using Leibniz's rule for differentiation under the integral sign, we have: \[ \frac{d}{dx} \left( \int_{\sin x}^{1} t^{2} f(t) \, dt \right) = t^{2} f(t) \bigg|_{t=1} \cdot \frac{d}{dx}(1) - t^{2} f(t) \bigg|_{t=\sin x} \cdot \frac{d}{dx}(\sin x) \] This simplifies to: \[ 0 - \sin^2 x \cdot f(\sin x) \cdot \cos x \] ### Step 3: Differentiate the right-hand side Differentiating the right-hand side gives: \[ -\cos x \] ### Step 4: Set the derivatives equal to each other Setting the two results equal gives us: \[ -\sin^2 x \cdot f(\sin x) \cdot \cos x = -\cos x \] ### Step 5: Simplify the equation If we cancel out \(-\cos x\) (noting that \(\cos x \neq 0\) in the interval \( (0, \frac{\pi}{2})\)), we get: \[ \sin^2 x \cdot f(\sin x) = 1 \] ### Step 6: Solve for \( f(\sin x) \) From the equation above, we can express \( f(\sin x) \): \[ f(\sin x) = \frac{1}{\sin^2 x} \] ### Step 7: Substitute \( \sin x = \frac{1}{\sqrt{3}} \) Now, we need to find \( f\left(\frac{1}{\sqrt{3}}\right) \). We substitute \( \sin x = \frac{1}{\sqrt{3}} \): \[ f\left(\frac{1}{\sqrt{3}}\right) = \frac{1}{\left(\frac{1}{\sqrt{3}}\right)^2} = \frac{1}{\frac{1}{3}} = 3 \] ### Conclusion Thus, the value of \( f\left(\frac{1}{\sqrt{3}}\right) \) is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

If int_(sinx)^(1) t^(2)f(t)dt=1-sinx " for all " x in [0,pi//2] , then f((1)/(sqrt(3)))=

Ifint_(sin x)^(1)t^(2)f(t)dt=1-sin x, wherex in(0,(pi)/(2)) then find the value of f((1)/(sqrt(3)))

If int_(cos x)^(1)t^(2)f(t)dt=1-cos x AA x in(0,(pi)/(2)) then the value of [f((sqrt(3))/(4))] is

Let F(x)=int_(sinx)^(cosx)e^((1+sin^(-1)(t))dt on [0,(pi)/(2)] , then

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to

If int_(0)^(x)f(t)dt=x^(2)+int_(x)^(1)t^(2)f(t)dt, then f'((1)/(2)) is

f(x)=int_(0)^(x)(e^(t)-1)(t-1)(sin t-cos t)sin tdt,AA x in(-(pi)/(2),2 pi) then f(x) is decreasing in :

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

If int_(0)^(x^(3)(1+x))f(t)dt=x then f(2) is equal to

ML KHANNA-DEFINITE INTEGRAL-Problem set (5) (Multiple Choice Questions)
  1. If f(x)= int(x)^(x^(2)) (dt)/(1+ t^(3)), then f'(2)=

    Text Solution

    |

  2. If f(x) = int(1//x^(2))^(2) cos sqrtt dt then f'(1) is equal to

    Text Solution

    |

  3. If int(sin x)^(1) t^(2) f(t) dt =1- sin x, x in (0, (pi)/(2)) then f((...

    Text Solution

    |

  4. If f(x)= int(x^(2))^(x^(3)) (dt)/(log t), x gt 0 then

    Text Solution

    |

  5. Let f:(0, oo) in R and F(x) =underset(0)overset(x) int f(t) dt. If F(x...

    Text Solution

    |

  6. If int(0)^(t^(2)) xf (x) dx= (2)/(5) t^(5), then f(4/25)=

    Text Solution

    |

  7. The integral int(0)^(2) (|x+2|)/(x+2)dx is equal to

    Text Solution

    |

  8. int(-3)^(3) (x-4)/((|x-4|))dx=

    Text Solution

    |

  9. The value of overset(sin^(2)x)underset(0)int sin^(-1)sqrt(t)dt+overs...

    Text Solution

    |

  10. If int(pi//3)^(x) sqrt(3-2sin^(2)u) du + int(0)^(y) cos t dt= 0, then ...

    Text Solution

    |

  11. The points of extremum of the function F(x)= int(1)^(x) e^(-t^(2)) (1-...

    Text Solution

    |

  12. The points of extemum of f(x)= int(0)^(x^(2)) (t^(2)- 5t +4)/(2+e^(t))...

    Text Solution

    |

  13. If int(0)^(x) f(t) dt= x + int(x)^(1) t f(t) dt, then the valeu of f(1...

    Text Solution

    |

  14. If int(0)^(t) (bx cos 4x- a sin 4x)/(x^(2)) dx= (a sin 4t)/(t)-1, wher...

    Text Solution

    |

  15. Lt(x rarr 0)(int(0)^(x^(2)) (tan^(-1) t)^(2) dt)/(int(0)^(x^(2)) (sin ...

    Text Solution

    |

  16. The value of the integral overset(b)underset(a)int (|x|)/(x)dx, a lt b...

    Text Solution

    |

  17. If a lt 0 lt b, then int(a)^(b) x|x| dx=

    Text Solution

    |

  18. int (-1)^(1)| 1 - x| dx is equal to

    Text Solution

    |

  19. int(-2)^(2) |x(x-1)|dx=

    Text Solution

    |

  20. int(0)^(4) |x-1| dx=

    Text Solution

    |