Home
Class 12
MATHS
If f(x)= int(x^(2))^(x^(3)) (dt)/(log t)...

If `f(x)= int_(x^(2))^(x^(3)) (dt)/(log t), x gt 0` then

A

`f'(x)= -(1)/(6log x)`

B

f is an increasing function

C

f has minimum at x=1

D

f is an increasing function on `[1, oo]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the function defined by the integral: Given: \[ f(x) = \int_{x^2}^{x^3} \frac{dt}{\log t} \] ### Step 1: Differentiate \( f(x) \) We will use the Fundamental Theorem of Calculus and Leibniz's rule for differentiation under the integral sign. According to this theorem: \[ f'(x) = \frac{d}{dx} \left( \int_{a(x)}^{b(x)} g(t) \, dt \right) = g(b(x)) \cdot b'(x) - g(a(x)) \cdot a'(x) \] Here, \( a(x) = x^2 \), \( b(x) = x^3 \), and \( g(t) = \frac{1}{\log t} \). ### Step 2: Calculate \( b'(x) \) and \( a'(x) \) - \( b'(x) = \frac{d}{dx}(x^3) = 3x^2 \) - \( a'(x) = \frac{d}{dx}(x^2) = 2x \) ### Step 3: Evaluate \( g(b(x)) \) and \( g(a(x)) \) - \( g(b(x)) = g(x^3) = \frac{1}{\log(x^3)} = \frac{1}{3 \log x} \) (using the property \( \log(a^b) = b \log a \)) - \( g(a(x)) = g(x^2) = \frac{1}{\log(x^2)} = \frac{1}{2 \log x} \) ### Step 4: Substitute into the derivative formula Now we can substitute these values into the derivative formula: \[ f'(x) = g(b(x)) \cdot b'(x) - g(a(x)) \cdot a'(x) \] Substituting the values we calculated: \[ f'(x) = \left( \frac{1}{3 \log x} \right) \cdot (3x^2) - \left( \frac{1}{2 \log x} \right) \cdot (2x) \] ### Step 5: Simplify the expression \[ f'(x) = \frac{3x^2}{3 \log x} - \frac{2x}{2 \log x} \] \[ f'(x) = \frac{x^2}{\log x} - \frac{x}{\log x} \] \[ f'(x) = \frac{x^2 - x}{\log x} \] ### Step 6: Factor the numerator \[ f'(x) = \frac{x(x - 1)}{\log x} \] ### Step 7: Analyze the sign of \( f'(x) \) 1. For \( x > 1 \), \( x - 1 > 0 \) and \( \log x > 0 \) so \( f'(x) > 0 \). Thus, \( f(x) \) is increasing for \( x > 1 \). 2. For \( 0 < x < 1 \), \( x - 1 < 0 \) and \( \log x < 0 \) so \( f'(x) > 0 \) (since a negative divided by a negative is positive). Thus, \( f(x) \) is also increasing for \( 0 < x < 1 \). ### Conclusion The function \( f(x) \) is increasing for all \( x > 0 \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

If F(x) =int_(x^(2))^(x^(3)) log t dt (x gt 0) , then F'(x) equals

Let f (x)= int _(x^(2))^(x ^(3))(dt)/(ln t) for x gt 1 and g (x) = int _(1) ^(x) (2t ^(2) -lnt ) f(t) dt(x gt 1), then:

If F(x)=int_(e^(2x))^(e^(3x))(t)/(log_(e)t)dt, then the first derivative of F(x) with respect to ln x at x=ln2 is

If f(x)= int_(x)^(x^(2))1/((log t)^2)dt ,x ne 1 then f(x)is monotomically

The derivative of f(x)=int_(x^(2))^(x^(3))(1)/(log_(e)(t))dt,(x>0), is

Find the derivative with respect to x of the following functions : (a) F(x) = int_(x^(2))^(x^(3)) "In t dt " (x gt 0) (b) f(x) = int_(1//x)^(sqrt(x)) cos (t^(2)) dt (x gt 0)

If f(x)=int_(log_(e)x)^(x)(dt)/(x+t) then f'(x)=

If f(x)=int_(0)^(x)tf(t)dt+2, then

ML KHANNA-DEFINITE INTEGRAL-Problem set (5) (Multiple Choice Questions)
  1. If f(x) = int(1//x^(2))^(2) cos sqrtt dt then f'(1) is equal to

    Text Solution

    |

  2. If int(sin x)^(1) t^(2) f(t) dt =1- sin x, x in (0, (pi)/(2)) then f((...

    Text Solution

    |

  3. If f(x)= int(x^(2))^(x^(3)) (dt)/(log t), x gt 0 then

    Text Solution

    |

  4. Let f:(0, oo) in R and F(x) =underset(0)overset(x) int f(t) dt. If F(x...

    Text Solution

    |

  5. If int(0)^(t^(2)) xf (x) dx= (2)/(5) t^(5), then f(4/25)=

    Text Solution

    |

  6. The integral int(0)^(2) (|x+2|)/(x+2)dx is equal to

    Text Solution

    |

  7. int(-3)^(3) (x-4)/((|x-4|))dx=

    Text Solution

    |

  8. The value of overset(sin^(2)x)underset(0)int sin^(-1)sqrt(t)dt+overs...

    Text Solution

    |

  9. If int(pi//3)^(x) sqrt(3-2sin^(2)u) du + int(0)^(y) cos t dt= 0, then ...

    Text Solution

    |

  10. The points of extremum of the function F(x)= int(1)^(x) e^(-t^(2)) (1-...

    Text Solution

    |

  11. The points of extemum of f(x)= int(0)^(x^(2)) (t^(2)- 5t +4)/(2+e^(t))...

    Text Solution

    |

  12. If int(0)^(x) f(t) dt= x + int(x)^(1) t f(t) dt, then the valeu of f(1...

    Text Solution

    |

  13. If int(0)^(t) (bx cos 4x- a sin 4x)/(x^(2)) dx= (a sin 4t)/(t)-1, wher...

    Text Solution

    |

  14. Lt(x rarr 0)(int(0)^(x^(2)) (tan^(-1) t)^(2) dt)/(int(0)^(x^(2)) (sin ...

    Text Solution

    |

  15. The value of the integral overset(b)underset(a)int (|x|)/(x)dx, a lt b...

    Text Solution

    |

  16. If a lt 0 lt b, then int(a)^(b) x|x| dx=

    Text Solution

    |

  17. int (-1)^(1)| 1 - x| dx is equal to

    Text Solution

    |

  18. int(-2)^(2) |x(x-1)|dx=

    Text Solution

    |

  19. int(0)^(4) |x-1| dx=

    Text Solution

    |

  20. The vaue of underset(-1)overset(2)int (|x|)/(x)dx is

    Text Solution

    |