Home
Class 12
MATHS
If int(0)^(t^(2)) xf (x) dx= (2)/(5) t^(...

If `int_(0)^(t^(2)) xf (x) dx= (2)/(5) t^(5)`, then f(4/25)=

A

`-2//5`

B

`-5//2`

C

1

D

`5//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f\left(\frac{4}{25}\right) \) given the equation: \[ \int_{0}^{t^2} x f(x) \, dx = \frac{2}{5} t^5 \] ### Step 1: Differentiate both sides with respect to \( t \) We start by differentiating both sides of the equation with respect to \( t \): \[ \frac{d}{dt} \left( \int_{0}^{t^2} x f(x) \, dx \right) = \frac{d}{dt} \left( \frac{2}{5} t^5 \right) \] ### Step 2: Apply the Fundamental Theorem of Calculus Using the Fundamental Theorem of Calculus and the chain rule, we differentiate the left-hand side: \[ \frac{d}{dt} \left( \int_{0}^{t^2} x f(x) \, dx \right) = t^2 f(t^2) \cdot \frac{d}{dt}(t^2) - 0 = t^2 f(t^2) \cdot 2t \] So, we have: \[ 2t^3 f(t^2) \] ### Step 3: Differentiate the right-hand side Now we differentiate the right-hand side: \[ \frac{d}{dt} \left( \frac{2}{5} t^5 \right) = \frac{2}{5} \cdot 5 t^4 = 2 t^4 \] ### Step 4: Set the derivatives equal to each other Now we equate the two results: \[ 2t^3 f(t^2) = 2t^4 \] ### Step 5: Simplify the equation We can simplify this by dividing both sides by \( 2t^3 \) (assuming \( t \neq 0 \)): \[ f(t^2) = t \] ### Step 6: Substitute \( t^2 = \frac{4}{25} \) Now, we need to find \( f\left(\frac{4}{25}\right) \). We set \( t^2 = \frac{4}{25} \), which gives us: \[ t = \sqrt{\frac{4}{25}} = \frac{2}{5} \] ### Step 7: Find \( f\left(\frac{4}{25}\right) \) Using the relation \( f(t^2) = t \): \[ f\left(\frac{4}{25}\right) = \frac{2}{5} \] ### Conclusion Thus, the value of \( f\left(\frac{4}{25}\right) \) is: \[ \boxed{\frac{2}{5}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

If f(x) is differentiable and int_(0)^(t^(2))xf(x)dx=(2)/(5)t^(5), then f((4)/(25)) equals (a)(2)/(5)(b)-(5)/(2)(c)1(d)(5)/(2)

If f(x) is differentiable and int_(0)^(t^2)xf(x)dx=(2)/(5)t^5 ,then 5 f((4)/(25)) is equal to ....

If int_(0)^(x^(2))tf(t)dt=x^(5)-x^(3) ,then f(1)=

If int_(0)^(1) f(t)dt=x^2+int_(0)^(1) t^2f(t)dt , then f'(1/2)is

If int _(0) ^(k) f (t) d t = x ^(2) + int _(x) ^(1) t ^(2) f (t) d t, if f '(1//2) is (24)/(5 ^(k)), then the vlaue of k is

Let f(x) be a differentiable function such that int_(t)^(t^(2))xf(x)dx=(4)/(3)t^(3)-(4t)/(3)AA t ge0 , then f(1) is equal to

ML KHANNA-DEFINITE INTEGRAL-Problem set (5) (Multiple Choice Questions)
  1. If f(x)= int(x^(2))^(x^(3)) (dt)/(log t), x gt 0 then

    Text Solution

    |

  2. Let f:(0, oo) in R and F(x) =underset(0)overset(x) int f(t) dt. If F(x...

    Text Solution

    |

  3. If int(0)^(t^(2)) xf (x) dx= (2)/(5) t^(5), then f(4/25)=

    Text Solution

    |

  4. The integral int(0)^(2) (|x+2|)/(x+2)dx is equal to

    Text Solution

    |

  5. int(-3)^(3) (x-4)/((|x-4|))dx=

    Text Solution

    |

  6. The value of overset(sin^(2)x)underset(0)int sin^(-1)sqrt(t)dt+overs...

    Text Solution

    |

  7. If int(pi//3)^(x) sqrt(3-2sin^(2)u) du + int(0)^(y) cos t dt= 0, then ...

    Text Solution

    |

  8. The points of extremum of the function F(x)= int(1)^(x) e^(-t^(2)) (1-...

    Text Solution

    |

  9. The points of extemum of f(x)= int(0)^(x^(2)) (t^(2)- 5t +4)/(2+e^(t))...

    Text Solution

    |

  10. If int(0)^(x) f(t) dt= x + int(x)^(1) t f(t) dt, then the valeu of f(1...

    Text Solution

    |

  11. If int(0)^(t) (bx cos 4x- a sin 4x)/(x^(2)) dx= (a sin 4t)/(t)-1, wher...

    Text Solution

    |

  12. Lt(x rarr 0)(int(0)^(x^(2)) (tan^(-1) t)^(2) dt)/(int(0)^(x^(2)) (sin ...

    Text Solution

    |

  13. The value of the integral overset(b)underset(a)int (|x|)/(x)dx, a lt b...

    Text Solution

    |

  14. If a lt 0 lt b, then int(a)^(b) x|x| dx=

    Text Solution

    |

  15. int (-1)^(1)| 1 - x| dx is equal to

    Text Solution

    |

  16. int(-2)^(2) |x(x-1)|dx=

    Text Solution

    |

  17. int(0)^(4) |x-1| dx=

    Text Solution

    |

  18. The vaue of underset(-1)overset(2)int (|x|)/(x)dx is

    Text Solution

    |

  19. int(0)^(2) |(1-x)|dx=

    Text Solution

    |

  20. int(0)^(4) {|x-1| + |x-3| dx}=

    Text Solution

    |