Home
Class 12
MATHS
int(-3)^(3) (x-4)/((|x-4|))dx=...

`int_(-3)^(3) (x-4)/((|x-4|))dx`=

A

0

B

6

C

`-6`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int_{-3}^{3} \frac{x-4}{|x-4|} \, dx, \] we need to analyze the expression \(\frac{x-4}{|x-4|}\). ### Step 1: Determine the behavior of \(|x-4|\) The absolute value function \(|x-4|\) can be expressed piecewise: - For \(x < 4\), \(|x-4| = -(x-4) = 4-x\) - For \(x \geq 4\), \(|x-4| = x-4\) Since our limits of integration are from \(-3\) to \(3\), which are both less than \(4\), we can use the first case: \[ |x-4| = 4 - x \quad \text{for } x \in [-3, 3]. \] ### Step 2: Rewrite the integrand Now we can rewrite the integrand: \[ \frac{x-4}{|x-4|} = \frac{x-4}{4-x}. \] Since \(4-x\) is positive for \(x < 4\), we can simplify: \[ \frac{x-4}{4-x} = -1. \] ### Step 3: Set up the integral Now we can set up the integral: \[ \int_{-3}^{3} -1 \, dx. \] ### Step 4: Calculate the integral The integral of \(-1\) over the interval from \(-3\) to \(3\) is: \[ -1 \cdot (3 - (-3)) = -1 \cdot 6 = -6. \] ### Final Answer Thus, the value of the integral is: \[ \int_{-3}^{3} \frac{x-4}{|x-4|} \, dx = -6. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(1)^(3)(3x-4)dx

int_(1)^(3)(3x-4)dx

int_(1)^(3)(3x-4)*dx

int_(3)^(4)(dx)/((x^(2)-4))

int(3x-4)^(3)dx

int_(1)^(3)x^(4)dx

int(3x+4)^(3)dx=

int_(3)^(4)sqrt((x-3)/(4-x))dx=

int((x-x^(3))^(1//3))/(x^(4))dx=

int (x^(3) +3x +4)/(sqrt(x)) dx