Home
Class 12
MATHS
The value of overset(sin^(2)x)underset...

The value of
`overset(sin^(2)x)underset(0)int sin^(-1)sqrt(t)dt+overset(cos^(2)x)underset(0)int cos^(-1)sqrt(t)dt`, is

A

`pi//2`

B

1

C

`pi//4`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(sin^(2)) sin^(-1)sqrt(t)dt+int_(0)^(cos^(2)x)cos^(-1)sqrt(t)dt , is

The value of int_(0)^(sin^(2)x)sin^(-1)sqrt(t)dt+int_(0)^(cos^(2)x)cos^(-1)sqrt(t)dt is

int_(0)^(1)t^(2)sqrt(1-t)*dt

int_(0)^(1)t^(5)*sqrt(1-t^(2))*dt

f(x)=int_(0)^(x^(2))((sin^(-1)sqrt(t))^(2))/(sqrt(t))dt

The maximum value of cos (int_(2x)^(x^(2)) e^t sin^2 " t dt ")

Prove that: y=int_((1)/(8))^(sin^(2)x)sin^(-1)sqrt(t)dt+int_((1)/(8))^(cos^(2)x)cos^(-1)sqrt(t) where 0<=x<=(pi)/(2), is the equation of a straight line parallel to the x-axis.Find the equation.