Home
Class 12
MATHS
If int(pi//3)^(x) sqrt(3-2sin^(2)u) du +...

If `int_(pi//3)^(x) sqrt(3-2sin^(2)u) du + int_(0)^(y) cos t dt= 0`, then `(dy)/(dx)` is equal to

A

`(sqrt""(4-3sin^(2)x))/(cos y)`

B

`(-sqrt""(3-2 sin^(2)x))/(cos y)`

C

`sqrt""(3-2sin^(2)x) + cos y`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \int_{\frac{\pi}{3}}^{x} \sqrt{3 - 2\sin^2 u} \, du + \int_{0}^{y} \cos t \, dt = 0 \] ### Step 1: Differentiate both sides with respect to \(x\) Using the Fundamental Theorem of Calculus and the chain rule, we differentiate the left-hand side: \[ \frac{d}{dx} \left( \int_{\frac{\pi}{3}}^{x} \sqrt{3 - 2\sin^2 u} \, du \right) + \frac{d}{dx} \left( \int_{0}^{y} \cos t \, dt \right) = 0 \] ### Step 2: Apply the Fundamental Theorem of Calculus For the first integral: \[ \frac{d}{dx} \left( \int_{\frac{\pi}{3}}^{x} \sqrt{3 - 2\sin^2 u} \, du \right) = \sqrt{3 - 2\sin^2 x} \] For the second integral, we apply the chain rule: \[ \frac{d}{dx} \left( \int_{0}^{y} \cos t \, dt \right) = \cos y \cdot \frac{dy}{dx} \] ### Step 3: Set up the equation Now we can set up the equation from the differentiated terms: \[ \sqrt{3 - 2\sin^2 x} + \cos y \cdot \frac{dy}{dx} = 0 \] ### Step 4: Solve for \(\frac{dy}{dx}\) Rearranging the equation gives: \[ \cos y \cdot \frac{dy}{dx} = -\sqrt{3 - 2\sin^2 x} \] Now, we can isolate \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = -\frac{\sqrt{3 - 2\sin^2 x}}{\cos y} \] ### Final Result Thus, we find that: \[ \frac{dy}{dx} = -\frac{\sqrt{3 - 2\sin^2 x}}{\cos y} \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

If int_((pi)/(3))^(x)sqrt((3-sin^(2)t))dt+int_(0)^(y)cos tdt=0, then evaluate (dy)/(dx)

If int_((pi)/(2))^(x)sqrt(3-2sin^(2))tdt+int_(0)^(y)cos tdt=0, then ((dy)/(dx))atx=pi and y=pi is

if int_((pi)/(3))^(x)sqrt(3-sin^(2)t)dt+int_(0)^(y)cos tdt=0 then (dy)/(dx) is (A)(sqrt(3-sin^(2)x))/(cos y)(B)-(sqrt(3-sin^(2)x))/(cos y) (C) -(sqrt(3-cos^(2)x))/(sin y) (D) none of these

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

If int _(0) ^(y) cos t ^(2) dt= int _(0) ^(x ^(2)) (sint)/(t ) dt then (dy)/(dx) is equal to

int_(0)^(2 pi)[sin t]dt

If x=int_(0)^(y)sqrt(1+t^(2))dt, find (dy)/(dx)