Home
Class 12
MATHS
The points of extemum of f(x)= int(0)^(x...

The points of extemum of `f(x)= int_(0)^(x^(2)) (t^(2)- 5t +4)/(2+e^(t)) dt` are

A

x=1

B

`x= -1`

C

x=0

D

`x= -2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the points of extremum of the function \[ f(x) = \int_{0}^{x^{2}} \frac{t^{2} - 5t + 4}{2 + e^{t}} \, dt, \] we need to follow these steps: ### Step 1: Differentiate \( f(x) \) To find the points of extremum, we first need to differentiate \( f(x) \) with respect to \( x \). We will apply the Fundamental Theorem of Calculus and the chain rule. \[ f'(x) = \frac{d}{dx} \left( \int_{0}^{x^{2}} \frac{t^{2} - 5t + 4}{2 + e^{t}} \, dt \right) = \frac{(x^{2})^{2} - 5(x^{2}) + 4}{2 + e^{x^{2}}} \cdot \frac{d}{dx}(x^{2}) \] Using the chain rule, we have: \[ f'(x) = \frac{x^{4} - 5x^{2} + 4}{2 + e^{x^{2}}} \cdot 2x \] ### Step 2: Set the derivative to zero To find the points of extremum, we set \( f'(x) = 0 \): \[ \frac{x^{4} - 5x^{2} + 4}{2 + e^{x^{2}}} \cdot 2x = 0 \] This equation will be zero if either \( 2x = 0 \) or the numerator is zero. ### Step 3: Solve for \( x \) 1. From \( 2x = 0 \): \[ x = 0 \] 2. From the numerator \( x^{4} - 5x^{2} + 4 = 0 \): Let \( y = x^{2} \), then we have: \[ y^{2} - 5y + 4 = 0 \] This is a quadratic equation. We can use the quadratic formula: \[ y = \frac{5 \pm \sqrt{(-5)^{2} - 4 \cdot 1 \cdot 4}}{2 \cdot 1} = \frac{5 \pm \sqrt{25 - 16}}{2} = \frac{5 \pm 3}{2} \] Thus, we get: \[ y = \frac{8}{2} = 4 \quad \text{or} \quad y = \frac{2}{2} = 1 \] Therefore, \( x^{2} = 4 \) gives \( x = \pm 2 \) and \( x^{2} = 1 \) gives \( x = \pm 1 \). ### Step 4: List all points of extremum Combining all the solutions, we have the points of extremum: \[ x = 0, \quad x = 1, \quad x = -1, \quad x = 2, \quad x = -2 \] ### Final Answer The points of extremum of the function \( f(x) \) are \( x = 0, \, x = 1, \, x = -1, \, x = 2, \, x = -2 \). ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

The total number of extremum(s) of y=int_(0)^(x^(2))(t^(2)-5t+4)/(2+e^(t))dt are

Find the points of maxima of x^(2)f(x)=int_(0)^(x^(2))(t^(2)-t)/(e^(t)+1)dt

Find the points of minima for f(x)=int_(0)^(x)t(t-1)(t-2)dt

Let F(x)=int_(0)^(x)(t-1)(t-2)^(2)dt

If f(x)=int_(0)^(x)tf(t)dt+2, then

f(x)=int_(0)^(x^(2))((sin^(-1)sqrt(t))^(2))/(sqrt(t))dt