Home
Class 12
MATHS
If int(0)^(x) f(t) dt= x + int(x)^(1) t ...

If `int_(0)^(x) f(t) dt= x + int_(x)^(1) t f(t) dt`, then the valeu of f(1) is

A

`(1)/(2)`

B

0

C

1

D

`-(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ \int_{0}^{x} f(t) dt = x + \int_{x}^{1} t f(t) dt \] ### Step 1: Differentiate both sides with respect to \(x\) We will apply the Fundamental Theorem of Calculus on the left side and use the Leibniz rule on the right side. \[ \frac{d}{dx} \left( \int_{0}^{x} f(t) dt \right) = f(x) \] For the right side, we differentiate: \[ \frac{d}{dx} \left( x + \int_{x}^{1} t f(t) dt \right) = 1 + \frac{d}{dx} \left( \int_{x}^{1} t f(t) dt \right) \] Using the Leibniz rule, we have: \[ \frac{d}{dx} \left( \int_{x}^{1} t f(t) dt \right) = -x f(x) \] Thus, the right side becomes: \[ 1 - x f(x) \] Setting both sides equal gives us: \[ f(x) = 1 - x f(x) \] ### Step 2: Rearranging the equation Now we rearrange the equation to isolate \(f(x)\): \[ f(x) + x f(x) = 1 \] Factoring out \(f(x)\): \[ f(x)(1 + x) = 1 \] ### Step 3: Solve for \(f(x)\) Now we can solve for \(f(x)\): \[ f(x) = \frac{1}{1 + x} \] ### Step 4: Find \(f(1)\) Now we need to find \(f(1)\): \[ f(1) = \frac{1}{1 + 1} = \frac{1}{2} \] Thus, the value of \(f(1)\) is: \[ \boxed{\frac{1}{2}} \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(x) f(t)dt=x+int_(x)^(1) t f(t) dt , then the value of f(1), is

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

If int_(0)^(x)f(t)dt=x+int_(x)^(1)f(t)dt ,then the value of f(1) is

f(x)=int_(0)^( pi)f(t)dt=x+int_(x)^(1)tf(t)dt, then the value of f(1) is (1)/(2)

If int_(0)^(1) f(t)dt=x^2+int_(0)^(1) t^2f(t)dt , then f'(1/2)is

If f:R in R is continuous and differentiable function such that int_(-1)^(x) f(t)dt+f'''(3) int_(x)^(1) dt=int_(1)^(x) t^(3)dt-f'(1)int_(0)^(x) t^(2)dt+f'(2) int_(x)^(3) r dt , then the value of f'(4), is

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

If f(x)=1+(1)/(x)int_(1)^(x)f(t)dt, then the value of (e^(-1)) is

If f(x)=int_(0)^(x)e^(-t)f(x-t)dt then the value of f(3) is

If f(x)=int_(0)^(x)tf(t)dt+2, then