Home
Class 12
MATHS
Lt(x rarr 0)(int(0)^(x^(2)) (tan^(-1) t)...

`Lt_(x rarr 0)(int_(0)^(x^(2)) (tan^(-1) t)^(2) dt)/(int_(0)^(x^(2)) (sin sqrtt dt)`=

A

`-1`

B

`-1//2`

C

`0`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \[ \lim_{x \to 0} \frac{\int_{0}^{x^2} (\tan^{-1} t)^2 \, dt}{\int_{0}^{x^2} \sin \sqrt{t} \, dt} \] we start by substituting \(x = 0\). This gives us: \[ \frac{\int_{0}^{0} (\tan^{-1} t)^2 \, dt}{\int_{0}^{0} \sin \sqrt{t} \, dt} = \frac{0}{0} \] This is an indeterminate form, so we can apply L'Hôpital's Rule, which states that if we have an indeterminate form \( \frac{0}{0} \), we can differentiate the numerator and the denominator. ### Step 1: Differentiate the Numerator and Denominator Using the Fundamental Theorem of Calculus, we differentiate the numerator and denominator: 1. **Numerator**: \[ \frac{d}{dx} \left( \int_{0}^{x^2} (\tan^{-1} t)^2 \, dt \right) = (\tan^{-1}(x^2))^2 \cdot \frac{d}{dx}(x^2) = (\tan^{-1}(x^2))^2 \cdot 2x \] 2. **Denominator**: \[ \frac{d}{dx} \left( \int_{0}^{x^2} \sin \sqrt{t} \, dt \right) = \sin(\sqrt{x^2}) \cdot \frac{d}{dx}(x^2) = \sin(x) \cdot 2x \] ### Step 2: Rewrite the Limit Now we can rewrite the limit using these derivatives: \[ \lim_{x \to 0} \frac{(\tan^{-1}(x^2))^2 \cdot 2x}{\sin(x) \cdot 2x} \] ### Step 3: Simplify the Expression The \(2x\) terms in the numerator and denominator cancel out (as long as \(x \neq 0\)): \[ \lim_{x \to 0} \frac{(\tan^{-1}(x^2))^2}{\sin(x)} \] ### Step 4: Evaluate the Limit As \(x \to 0\), we know that \(\tan^{-1}(x^2) \to 0\) and \(\sin(x) \to 0\). We can rewrite \(\tan^{-1}(x^2)\) in terms of \(x\): \[ \tan^{-1}(x^2) \sim x^2 \quad \text{as } x \to 0 \] Thus, \[ (\tan^{-1}(x^2))^2 \sim (x^2)^2 = x^4 \] So we have: \[ \lim_{x \to 0} \frac{x^4}{\sin(x)} \] Using the fact that \(\sin(x) \sim x\) as \(x \to 0\): \[ \lim_{x \to 0} \frac{x^4}{x} = \lim_{x \to 0} x^3 = 0 \] ### Final Result Thus, the limit evaluates to: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

lim_(x to 0)(int_(0)^(x^(2))(tan^(-1)t)dt)/(int_(0)^(x^(2))sin sqrt(t)dt) is equal to :

Lt_(x rarr0)((x^(4))/(int_(0)^(x^(2))tan^(-1)tdt))=

Lt_(x rarr0)((int_(0)^(x)tan^(2)t sec^(2)tdt)/(x^(3)))=

Lt_(x rarr0)((int_(0)^(x)sin^(3)xdx)/(x^(4)))

lim_(xrarroo)((int_(0)^(x)e^(t^(2))dt)^(2))/(int_(0)^(x)e^(2t^(2))dt) is equal to

Evaluate: lim_(x rarr0)(int_(0)^(x)cos t^(2)dt)/(x)

The value of lim_(x rarr oo)((int_(0)^(x+y)e^(t^(2))dt)^(2))/(int_(0)^(x+y)e^(2t^(2))dt) is equal to (i)0(ii)1 (iii) lim_(x rarr0)((int_(0)^(x)cos t^(2))/(x))-1(iv)-1

f(x)=int_(0)^(x^(2))((sin^(-1)sqrt(t))^(2))/(sqrt(t))dt