Home
Class 12
MATHS
If a lt 0 lt b, then int(a)^(b) x|x| dx=...

If `a lt 0 lt b`, then `int_(a)^(b) x|x| dx`=

A

`(1)/(2) (a^(2) +b^(2))`

B

`(1)/(3) (b^(2)-a^(2))`

C

`(1)/(3) (a^(3) +b^(3))`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{a}^{b} x |x| \, dx \) where \( a < 0 < b \), we will break the integral into two parts based on the behavior of the absolute value function \( |x| \). ### Step-by-Step Solution: 1. **Break the Integral**: Since \( a < 0 < b \), we can split the integral at 0: \[ \int_{a}^{b} x |x| \, dx = \int_{a}^{0} x |x| \, dx + \int_{0}^{b} x |x| \, dx \] 2. **Evaluate the First Integral**: For \( x < 0 \) (which applies for \( x \) in the interval \( [a, 0] \)), we have \( |x| = -x \). Thus, the first integral becomes: \[ \int_{a}^{0} x |x| \, dx = \int_{a}^{0} x (-x) \, dx = -\int_{a}^{0} x^2 \, dx \] 3. **Calculate the First Integral**: Now, we compute \( -\int_{a}^{0} x^2 \, dx \): \[ -\int_{a}^{0} x^2 \, dx = -\left[ \frac{x^3}{3} \right]_{a}^{0} = -\left( \frac{0^3}{3} - \frac{a^3}{3} \right) = -\left( 0 + \frac{a^3}{3} \right) = \frac{-a^3}{3} \] 4. **Evaluate the Second Integral**: For \( x > 0 \) (which applies for \( x \) in the interval \( [0, b] \)), we have \( |x| = x \). Thus, the second integral becomes: \[ \int_{0}^{b} x |x| \, dx = \int_{0}^{b} x^2 \, dx \] 5. **Calculate the Second Integral**: Now, we compute \( \int_{0}^{b} x^2 \, dx \): \[ \int_{0}^{b} x^2 \, dx = \left[ \frac{x^3}{3} \right]_{0}^{b} = \frac{b^3}{3} - 0 = \frac{b^3}{3} \] 6. **Combine the Results**: Now, we combine the results of both integrals: \[ \int_{a}^{b} x |x| \, dx = \frac{-a^3}{3} + \frac{b^3}{3} = \frac{-a^3 + b^3}{3} \] ### Final Answer: Thus, the final result of the integral is: \[ \int_{a}^{b} x |x| \, dx = \frac{-a^3 + b^3}{3} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

IF 0 lt a lt b then int_a^b |x|/x dx is equal to

If a lt b lt c in R and f (a + b +c - x) = f (x) for all, x then int_(a)^(b) (x(f(x) + f(x + c))dx)/(a + b) is:

Let f(x) and g(x) be any two continuous function in the interval [0, b] and 'a' be any point between 0 and b. Which satisfy the following conditions : f(x)=f(a-x), g(x)+g(a-x)=3, f(a+b-x)=f(x) . Also int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx, int_(a)^(b)f(x)dx=int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx If f(a+b-x)=f(x) , then int_(a)^(b)xf(x)dx is