Home
Class 12
MATHS
int(-2)^(2) |x(x-1)|dx=...

`int_(-2)^(2) |x(x-1)|dx`=

A

`(16)/(3)`

B

`(17)/(3)`

C

`(11)/(3)`

D

`(13)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-2}^{2} |x(x-1)| \, dx \), we first need to analyze the expression inside the absolute value, \( |x(x-1)| \). ### Step 1: Identify the points where \( x(x-1) = 0 \) The expression \( x(x-1) \) is zero at: - \( x = 0 \) - \( x = 1 \) These points will help us determine the intervals for integration. ### Step 2: Determine the sign of \( x(x-1) \) in each interval We will evaluate the sign of \( x(x-1) \) in the intervals: 1. \( (-\infty, 0) \) 2. \( (0, 1) \) 3. \( (1, \infty) \) - For \( x < 0 \): \( x(x-1) > 0 \) (since both \( x \) and \( x-1 \) are negative) - For \( 0 < x < 1 \): \( x(x-1) < 0 \) (since \( x \) is positive and \( x-1 \) is negative) - For \( x > 1 \): \( x(x-1) > 0 \) (since both \( x \) and \( x-1 \) are positive) ### Step 3: Rewrite the integral using the absolute value Now we can express the integral as: \[ I = \int_{-2}^{0} -x(x-1) \, dx + \int_{0}^{1} -x(x-1) \, dx + \int_{1}^{2} x(x-1) \, dx \] ### Step 4: Calculate each integral 1. **For \( \int_{-2}^{0} -x(x-1) \, dx \)**: \[ = \int_{-2}^{0} (-x^2 + x) \, dx \] \[ = \left[-\frac{x^3}{3} + \frac{x^2}{2}\right]_{-2}^{0} \] Evaluating the limits: \[ = \left(0\right) - \left[-\frac{(-2)^3}{3} + \frac{(-2)^2}{2}\right] \] \[ = 0 - \left[\frac{8}{3} - 2\right] = 0 - \left[\frac{8}{3} - \frac{6}{3}\right] = -\left[\frac{2}{3}\right] = \frac{2}{3} \] 2. **For \( \int_{0}^{1} -x(x-1) \, dx \)**: \[ = \int_{0}^{1} (-x^2 + x) \, dx \] \[ = \left[-\frac{x^3}{3} + \frac{x^2}{2}\right]_{0}^{1} \] Evaluating the limits: \[ = \left[-\frac{1^3}{3} + \frac{1^2}{2}\right] - \left(0\right) \] \[ = -\frac{1}{3} + \frac{1}{2} = \frac{-2 + 3}{6} = \frac{1}{6} \] 3. **For \( \int_{1}^{2} x(x-1) \, dx \)**: \[ = \int_{1}^{2} (x^2 - x) \, dx \] \[ = \left[\frac{x^3}{3} - \frac{x^2}{2}\right]_{1}^{2} \] Evaluating the limits: \[ = \left[\frac{2^3}{3} - \frac{2^2}{2}\right] - \left[\frac{1^3}{3} - \frac{1^2}{2}\right] \] \[ = \left[\frac{8}{3} - 2\right] - \left[\frac{1}{3} - \frac{1}{2}\right] \] \[ = \left[\frac{8}{3} - \frac{6}{3}\right] - \left[\frac{1}{3} - \frac{3}{6}\right] \] \[ = \frac{2}{3} - \left[\frac{1}{3} - \frac{1.5}{3}\right] = \frac{2}{3} - \frac{-0.5}{3} = \frac{2}{3} + \frac{0.5}{3} = \frac{2.5}{3} = \frac{5}{6} \] ### Step 5: Combine the results Now we can combine the results from all three integrals: \[ I = \frac{2}{3} + \frac{1}{6} + \frac{5}{6} \] Finding a common denominator (which is 6): \[ = \frac{4}{6} + \frac{1}{6} + \frac{5}{6} = \frac{10}{6} = \frac{5}{3} \] ### Final Answer Thus, the value of the integral is: \[ \int_{-2}^{2} |x(x-1)| \, dx = \frac{5}{3} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

The value of int_(-2)^(2)x(x-1)dx is:

int_(2)^(3) x/(x^(2)-1) dx =

int_(0)^(2)(3x^(2)+2x-1)dx=

Evaluate int_(2)^(3)(x)/(x^(2)-1)dx

Evaluate the following: int_-2^2(|x|+|x-1|)dx

int(2x)/((x^2+1)(x-1))dx

int(2x^(2))/((x-1))dx

int(x^(2)+2)/(x-1)dx

int sqrt(2x^(2)-5x-1)dx

Examples: int_(2)^(4)(x)/(x^(2)+1)dx