Home
Class 12
MATHS
int(0)^(4) |x-1| dx=...

`int_(0)^(4) |x-1| dx`=

A

1

B

2

C

3

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{4} |x-1| \, dx \), we need to break it down based on the definition of the absolute value function. ### Step 1: Identify the points where the expression inside the absolute value changes sign. The expression \( |x-1| \) changes sign at \( x = 1 \). Therefore, we will split the integral at this point. ### Step 2: Split the integral into two parts. We can write the integral as: \[ \int_{0}^{4} |x-1| \, dx = \int_{0}^{1} |x-1| \, dx + \int_{1}^{4} |x-1| \, dx \] ### Step 3: Determine the expression for \( |x-1| \) in each interval. - For \( 0 \leq x < 1 \), \( x - 1 < 0 \) so \( |x-1| = -(x-1) = 1-x \). - For \( 1 \leq x \leq 4 \), \( x - 1 \geq 0 \) so \( |x-1| = x-1 \). ### Step 4: Rewrite the integral with the new expressions. Now we can rewrite the integral: \[ \int_{0}^{4} |x-1| \, dx = \int_{0}^{1} (1-x) \, dx + \int_{1}^{4} (x-1) \, dx \] ### Step 5: Calculate the first integral \( \int_{0}^{1} (1-x) \, dx \). \[ \int_{0}^{1} (1-x) \, dx = \left[ x - \frac{x^2}{2} \right]_{0}^{1} = \left( 1 - \frac{1^2}{2} \right) - \left( 0 - 0 \right) = 1 - \frac{1}{2} = \frac{1}{2} \] ### Step 6: Calculate the second integral \( \int_{1}^{4} (x-1) \, dx \). \[ \int_{1}^{4} (x-1) \, dx = \left[ \frac{x^2}{2} - x \right]_{1}^{4} = \left( \frac{4^2}{2} - 4 \right) - \left( \frac{1^2}{2} - 1 \right) = \left( \frac{16}{2} - 4 \right) - \left( \frac{1}{2} - 1 \right) \] Calculating this gives: \[ = (8 - 4) - \left( \frac{1}{2} - 1 \right) = 4 - \left( \frac{1}{2} - 1 \right) = 4 - \left( -\frac{1}{2} \right) = 4 + \frac{1}{2} = 4.5 = \frac{9}{2} \] ### Step 7: Combine the results from both integrals. Now we add the results of both integrals: \[ \int_{0}^{4} |x-1| \, dx = \frac{1}{2} + \frac{9}{2} = \frac{10}{2} = 5 \] ### Final Answer: Thus, the value of the integral \( \int_{0}^{4} |x-1| \, dx \) is \( 5 \). ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(4)|x-1|dx

18.int_(0)^(4)|x-1|dx

(8.int_(0)^(4)|x-1|dx

By using the properties of definite integrals, evaluate the integrals int_(0)^(4)|x-1|dx

The valueof integral int_(0)^(4) |x -1|dx is

The value of int_(0)^(4)|x-1|dx is

Evaluate int_(0)^(4)(2x-1)dx

Evaluate int_(0)^(4)(2x-1)dx

Evaluate int_(0)^(4)(2x-1)dx