Home
Class 12
MATHS
int(0)^(2) |(1-x)|dx=...

`int_(0)^(2) |(1-x)|dx`=

A

1

B

2

C

4

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{2} |1 - x| \, dx \), we will break it down into two parts based on the behavior of the absolute value function. ### Step 1: Identify where the expression inside the absolute value changes sign The expression \( |1 - x| \) changes sign at \( x = 1 \). Therefore, we will split the integral into two parts: - From \( 0 \) to \( 1 \), \( 1 - x \geq 0 \) so \( |1 - x| = 1 - x \). - From \( 1 \) to \( 2 \), \( 1 - x < 0 \) so \( |1 - x| = -(1 - x) = x - 1 \). ### Step 2: Set up the integral We can now express the integral as: \[ \int_{0}^{2} |1 - x| \, dx = \int_{0}^{1} (1 - x) \, dx + \int_{1}^{2} (x - 1) \, dx \] ### Step 3: Calculate the first integral Calculate \( \int_{0}^{1} (1 - x) \, dx \): \[ \int (1 - x) \, dx = x - \frac{x^2}{2} + C \] Now, evaluate from \( 0 \) to \( 1 \): \[ \left[ x - \frac{x^2}{2} \right]_{0}^{1} = \left( 1 - \frac{1^2}{2} \right) - \left( 0 - 0 \right) = 1 - \frac{1}{2} = \frac{1}{2} \] ### Step 4: Calculate the second integral Now calculate \( \int_{1}^{2} (x - 1) \, dx \): \[ \int (x - 1) \, dx = \frac{x^2}{2} - x + C \] Evaluate from \( 1 \) to \( 2 \): \[ \left[ \frac{x^2}{2} - x \right]_{1}^{2} = \left( \frac{2^2}{2} - 2 \right) - \left( \frac{1^2}{2} - 1 \right) = \left( 2 - 2 \right) - \left( \frac{1}{2} - 1 \right) = 0 - \left( \frac{1}{2} - 1 \right) = 0 + \frac{1}{2} = \frac{1}{2} \] ### Step 5: Combine the results Now combine the results of the two integrals: \[ \int_{0}^{2} |1 - x| \, dx = \frac{1}{2} + \frac{1}{2} = 1 \] ### Final Answer Thus, the value of the integral \( \int_{0}^{2} |1 - x| \, dx \) is \( \boxed{1} \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2)|1-x^(2)|dx

The value of int_(0)^(2)|1-x|dx

Evaluate the integral I = int_(0)^(2) |1-x| dx

int_(0)^(2)|1-x|dx

Evaluate int_(0)^(2)||x-1|-x|dx

int_(0)^(12)(2x)dx-1=

Evaluate int_(0)^(1/2)x log(1-x)dx

int_(0)^(1)(1+2x)dx

int_(0)^(2)(x^(2)-1)dx=

Evaluate int_0^2 |1-x| dx