Home
Class 12
MATHS
int(0)^(4) {|x-1| + |x-3| dx}=...

`int_(0)^(4) {|x-1| + |x-3| dx}`=

A

5

B

8

C

10

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{4} \left( |x-1| + |x-3| \right) \, dx \), we will break it down into parts based on the points where the absolute values change, which are \( x = 1 \) and \( x = 3 \). ### Step 1: Identify intervals based on absolute values The absolute value function changes at the points \( x = 1 \) and \( x = 3 \). Therefore, we will break the integral into three parts: 1. From \( 0 \) to \( 1 \) 2. From \( 1 \) to \( 3 \) 3. From \( 3 \) to \( 4 \) ### Step 2: Rewrite the integral in each interval 1. For \( 0 \leq x < 1 \): - \( |x - 1| = 1 - x \) - \( |x - 3| = 3 - x \) - Thus, \( |x - 1| + |x - 3| = (1 - x) + (3 - x) = 4 - 2x \) 2. For \( 1 \leq x < 3 \): - \( |x - 1| = x - 1 \) - \( |x - 3| = 3 - x \) - Thus, \( |x - 1| + |x - 3| = (x - 1) + (3 - x) = 2 \) 3. For \( 3 \leq x \leq 4 \): - \( |x - 1| = x - 1 \) - \( |x - 3| = x - 3 \) - Thus, \( |x - 1| + |x - 3| = (x - 1) + (x - 3) = 2x - 4 \) ### Step 3: Set up the integral Now we can set up the integral as follows: \[ \int_{0}^{4} \left( |x-1| + |x-3| \right) \, dx = \int_{0}^{1} (4 - 2x) \, dx + \int_{1}^{3} 2 \, dx + \int_{3}^{4} (2x - 4) \, dx \] ### Step 4: Calculate each integral 1. **First integral**: \[ \int_{0}^{1} (4 - 2x) \, dx = \left[ 4x - x^2 \right]_{0}^{1} = (4 \cdot 1 - 1^2) - (4 \cdot 0 - 0^2) = 4 - 1 = 3 \] 2. **Second integral**: \[ \int_{1}^{3} 2 \, dx = \left[ 2x \right]_{1}^{3} = 2 \cdot 3 - 2 \cdot 1 = 6 - 2 = 4 \] 3. **Third integral**: \[ \int_{3}^{4} (2x - 4) \, dx = \left[ x^2 - 4x \right]_{3}^{4} = (4^2 - 4 \cdot 4) - (3^2 - 4 \cdot 3) = (16 - 16) - (9 - 12) = 0 - (-3) = 3 \] ### Step 5: Combine the results Now, we combine the results of the three integrals: \[ \int_{0}^{4} \left( |x-1| + |x-3| \right) \, dx = 3 + 4 + 3 = 10 \] ### Final Answer Thus, the value of the integral is \( \boxed{10} \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(4)(|x-1|)dx

18.int_(0)^(4)|x-1|dx

(8.int_(0)^(4)|x-1|dx

int_(0)^(1)|3x-1|dx=

int_(0)^(4)(|x-1|+|x-2|+|x-3|)dx=

int_(0)^(3)(x+1)dx

The value of int_(0)^(4)|x-1|dx is

int_(0)^(4)|x-1| dx is equal to

int_(0)^(1)[3x]dx