Home
Class 12
MATHS
The value of int(-3)^(3) |x| dx is...

The value of `int_(-3)^(3) |x| dx` is

A

3

B

6

C

9

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-3}^{3} |x| \, dx \), we will break it into two parts based on the definition of the absolute value function. ### Step 1: Break the integral into two parts The absolute value function \( |x| \) can be defined as: - \( |x| = -x \) when \( x < 0 \) - \( |x| = x \) when \( x \geq 0 \) Thus, we can split the integral at 0: \[ \int_{-3}^{3} |x| \, dx = \int_{-3}^{0} |x| \, dx + \int_{0}^{3} |x| \, dx \] ### Step 2: Evaluate the first integral For the first integral, where \( x < 0 \): \[ \int_{-3}^{0} |x| \, dx = \int_{-3}^{0} -x \, dx \] Now, we can integrate: \[ = -\left[ \frac{x^2}{2} \right]_{-3}^{0} \] Calculating this: \[ = -\left( \frac{0^2}{2} - \frac{(-3)^2}{2} \right) = -\left( 0 - \frac{9}{2} \right) = \frac{9}{2} \] ### Step 3: Evaluate the second integral For the second integral, where \( x \geq 0 \): \[ \int_{0}^{3} |x| \, dx = \int_{0}^{3} x \, dx \] Now, we can integrate: \[ = \left[ \frac{x^2}{2} \right]_{0}^{3} \] Calculating this: \[ = \left( \frac{3^2}{2} - \frac{0^2}{2} \right) = \frac{9}{2} \] ### Step 4: Combine the results Now we can combine the results from both integrals: \[ \int_{-3}^{3} |x| \, dx = \int_{-3}^{0} |x| \, dx + \int_{0}^{3} |x| \, dx = \frac{9}{2} + \frac{9}{2} = 9 \] ### Final Answer Thus, the value of the integral \( \int_{-3}^{3} |x| \, dx \) is \( 9 \). ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={1-|x|,|x|<=1 and 0,|x|<1 and g(x)=f(x-)+f(x+1) ,for all x in R .Then,the value of int_(-3)^(3)g(x)dx is

The value of int_(1)^(4) |x-3|dx is equal to

Let f(x)=max{x+|x|,x-[x]}, where [x] denotes the greatest integer <=x. Then the value of int_(-3)^(3)f(x)dx is:

The value of int_(-3)^(3)g(x)dx is

The value of int_(-2)^(3) |1-x^(2)|dx is

The value of int_(-2)^(3)|1-x^(2)|dx

The value of int_(-2)^(3)(|x|)/(x)dx is (a) 5 (b) 2 (c) -2 (d) 3

The value of int_(-1)^(3)(|x|+|x-1|) dx is equal to

The value of "int sin^(3)x dx