Home
Class 12
MATHS
int(0)^(pi) [2 sin x] dx=...

`int_(0)^(pi) [2 sin x] dx`=

A

`(2pi)/(3)`

B

`-(5pi)/(3)`

C

`-pi`

D

`-2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\pi} 2 \sin x \, dx \), we will follow these steps: ### Step 1: Set up the integral We start with the integral: \[ I = \int_{0}^{\pi} 2 \sin x \, dx \] ### Step 2: Factor out the constant Since 2 is a constant, we can factor it out of the integral: \[ I = 2 \int_{0}^{\pi} \sin x \, dx \] ### Step 3: Evaluate the integral of \( \sin x \) The integral of \( \sin x \) is: \[ \int \sin x \, dx = -\cos x + C \] Thus, we can evaluate: \[ \int_{0}^{\pi} \sin x \, dx = \left[-\cos x\right]_{0}^{\pi} \] ### Step 4: Calculate the definite integral Now we substitute the limits into the evaluated integral: \[ \left[-\cos(\pi) - (-\cos(0))\right] = \left[-(-1) - (-1)\right] = 1 + 1 = 2 \] ### Step 5: Multiply by the constant Now we substitute this result back into our equation for \( I \): \[ I = 2 \cdot 2 = 4 \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{\pi} 2 \sin x \, dx = 4 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi) [2sin x]dx=

Find the following integration :int_(0)^( pi)[2sin x]dx=

Prove the equality int_(0)^(pi) f (sin x) dx = 2 int_(0)^(pi//2) f (sin x) dx

int_(0)^(pi//2)x sin x dx=

int_(0)^(pi) x sin^(2) x dx

Evaluate the following : int_(0)^(pi//2)x sin x dx

int_(0)^(pi//2) x sin x dx is equal to

int _(0) ^(2pi) ( sin 2x )dx

The value of int_(0)^(2 pi)[2sin x]dx, where [.] represents the greatest integral functions,is