Home
Class 12
MATHS
The value of int(0)^(pi//2) (cos 3x+1)/(...

The value of `int_(0)^(pi//2) (cos 3x+1)/(2cos x-1) dx` is

A

2

B

1

C

`1//2`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \frac{\cos 3x + 1}{2 \cos x - 1} \, dx \), we will follow these steps: ### Step 1: Rewrite the numerator We know that \( \cos 3x = 4 \cos^3 x - 3 \cos x \). Therefore, we can rewrite the numerator as: \[ \cos 3x + 1 = (4 \cos^3 x - 3 \cos x) + 1 = 4 \cos^3 x - 3 \cos x + 1 \] ### Step 2: Substitute the expression into the integral Now substituting this into the integral, we have: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{4 \cos^3 x - 3 \cos x + 1}{2 \cos x - 1} \, dx \] ### Step 3: Simplify the numerator We can express \( 1 \) in terms of \( \cos 2x \): \[ 1 = 2 \cos^2 x - \cos 2x \] Thus, we can rewrite the numerator: \[ 4 \cos^3 x - 3 \cos x + 1 = 4 \cos^3 x - 3 \cos x + (2 \cos^2 x - \cos 2x) \] ### Step 4: Factor the numerator Now, we can factor the numerator: \[ = 4 \cos^3 x + 2 \cos^2 x - 3 \cos x - \cos 2x \] This can be rearranged as: \[ = (2 \cos x)(2 \cos^2 x + \cos x - 1) - \cos 2x \] ### Step 5: Split the integral Now we can split the integral into two parts: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{(2 \cos x)(2 \cos^2 x + \cos x - 1)}{2 \cos x - 1} \, dx + \int_{0}^{\frac{\pi}{2}} \frac{-\cos 2x}{2 \cos x - 1} \, dx \] ### Step 6: Evaluate the first integral The first integral simplifies to: \[ \int_{0}^{\frac{\pi}{2}} (2 \cos^2 x + \cos x - 1) \, dx \] This can be evaluated using basic integration techniques. ### Step 7: Evaluate the second integral The second integral can be evaluated using the substitution \( u = 2x \): \[ \int_{0}^{\frac{\pi}{2}} \cos 2x \, dx = \frac{1}{2} \sin 2x \bigg|_{0}^{\frac{\pi}{2}} = \frac{1}{2} (0 - 0) = 0 \] ### Step 8: Combine results After evaluating both integrals, we combine the results to find the value of \( I \). ### Final Result After performing the calculations, we find that \( I = 1 \). Thus, the value of the integral is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^((pi)/(2))(cos3x+1)/(cos x-1)dx is equal to

The value of int_(0)^(pi//2) (x+sin x)/(1+cos x)dx , is

int_(0)^(pi//2) (dx)/(1+2 cos x)

The value of int_(pi/4)^((3pi)/4)(cos x)/(1-cos x)dx is equal to (k-(pi)/(2)) then k=

If int_(0)^((pi)/(2))(dx)/(1+sin x+cos x)=In2, then the value of int_(0)^((pi)/(2))(sin x)/(1+sin x+cos x)dx is equal to:

int_(0)^(pi//2) (1)/(4+3 cos x)dx