Home
Class 12
MATHS
int(a)^(b) [|x-a| + |x-b|]dx=...

`int_(a)^(b) [|x-a| + |x-b|]dx`=

A

`((b-a)^(2))/(2)`

B

`(b^(2)-a^(2))/(2)`

C

`(a^(3)-b^(3))/(2)`

D

`(b-a)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{a}^{b} [|x-a| + |x-b|] \, dx \), we will analyze the expression inside the integral step by step. ### Step 1: Analyze the Absolute Values The expression \( |x-a| + |x-b| \) needs to be evaluated based on the intervals defined by \( a \) and \( b \). - For \( x < a \): - \( |x-a| = a-x \) - \( |x-b| = b-x \) - Thus, \( |x-a| + |x-b| = (a-x) + (b-x) = a + b - 2x \) - For \( a \leq x \leq b \): - \( |x-a| = x-a \) - \( |x-b| = b-x \) - Thus, \( |x-a| + |x-b| = (x-a) + (b-x) = b - a \) - For \( x > b \): - \( |x-a| = x-a \) - \( |x-b| = x-b \) - Thus, \( |x-a| + |x-b| = (x-a) + (x-b) = 2x - (a+b) \) Since the limits of integration are from \( a \) to \( b \), we only need to consider the case where \( a \leq x \leq b \). ### Step 2: Set Up the Integral From the analysis above, we have: \[ |x-a| + |x-b| = b - a \quad \text{for } x \in [a, b] \] Now, we can set up the integral: \[ \int_{a}^{b} [|x-a| + |x-b|] \, dx = \int_{a}^{b} (b - a) \, dx \] ### Step 3: Evaluate the Integral The integral simplifies to: \[ \int_{a}^{b} (b - a) \, dx = (b - a) \int_{a}^{b} 1 \, dx \] The integral of 1 from \( a \) to \( b \) is simply: \[ \int_{a}^{b} 1 \, dx = b - a \] Thus, we have: \[ \int_{a}^{b} (b - a) \, dx = (b - a)(b - a) = (b - a)^2 \] ### Final Answer Therefore, the value of the integral is: \[ \int_{a}^{b} [|x-a| + |x-b|] \, dx = (b - a)^2 \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(a)^(b)cos x dx

int_(a)^(b) sin x dx

int _(a) ^(b ) (| x |)/(x ) dx

int(x-a)(x-b)dx=

Prove that the equality int_(a)^(b) f(x) dx = int_(a)^(b) f(a + b - x) dx

The value of the integral int_(a)^(b) (|x|)/(x)dx, a lt b is

int _(a) ^(b) f (x) dx = int _(a) ^(b) f (a + b - x) dx