Home
Class 12
MATHS
If f(x)= |2^(x)-1| + |x-1|, then int(-2)...

If `f(x)= |2^(x)-1| + |x-1|`, then `int_(-2)^(2) f(x) dx`=

A

`5-(9)/(4) log 2`

B

`5+ (9)/(4 log 2)`

C

`-5-(9)/(4) log 2`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-2}^{2} f(x) \, dx \) where \( f(x) = |2^x - 1| + |x - 1| \), we need to analyze the function \( f(x) \) over the interval from \(-2\) to \(2\). ### Step 1: Identify the points where the expression inside the absolute values changes sign. 1. **For \( |2^x - 1| \)**: - \( 2^x - 1 = 0 \) when \( x = 0 \). - \( 2^x < 1 \) for \( x < 0 \) and \( 2^x > 1 \) for \( x > 0 \). 2. **For \( |x - 1| \)**: - \( x - 1 = 0 \) when \( x = 1 \). - \( x < 1 \) for \( x < 1 \) and \( x > 1 \) for \( x > 1 \). ### Step 2: Break the integral into intervals based on the points identified. The critical points are \( x = 0 \) and \( x = 1 \). Thus, we will break the integral into three parts: - From \(-2\) to \(0\) - From \(0\) to \(1\) - From \(1\) to \(2\) ### Step 3: Evaluate \( f(x) \) in each interval. 1. **For \( x \in [-2, 0] \)**: - \( 2^x < 1 \) and \( x < 1 \) - Therefore, \( f(x) = -(2^x - 1) - (x - 1) = -2^x + 1 - x + 1 = -2^x - x + 2 \). 2. **For \( x \in [0, 1] \)**: - \( 2^x \geq 1 \) and \( x < 1 \) - Therefore, \( f(x) = (2^x - 1) - (x - 1) = 2^x - 1 - x + 1 = 2^x - x \). 3. **For \( x \in [1, 2] \)**: - \( 2^x \geq 1 \) and \( x \geq 1 \) - Therefore, \( f(x) = (2^x - 1) + (x - 1) = 2^x - 1 + x - 1 = 2^x + x - 2 \). ### Step 4: Set up the integral. Now we can write the integral as: \[ \int_{-2}^{2} f(x) \, dx = \int_{-2}^{0} (-2^x - x + 2) \, dx + \int_{0}^{1} (2^x - x) \, dx + \int_{1}^{2} (2^x + x - 2) \, dx \] ### Step 5: Calculate each integral. 1. **Calculate \( \int_{-2}^{0} (-2^x - x + 2) \, dx \)**: \[ = \left[-\frac{2^x}{\ln 2} - \frac{x^2}{2} + 2x \right]_{-2}^{0} \] Evaluating at the limits: \[ = \left[-\frac{1}{\ln 2} - 0 + 0\right] - \left[-\frac{2^{-2}}{\ln 2} - 2 + 4\right] = -\frac{1}{\ln 2} + \frac{1/4}{\ln 2} + 2 = -\frac{3}{4\ln 2} + 2 \] 2. **Calculate \( \int_{0}^{1} (2^x - x) \, dx \)**: \[ = \left[\frac{2^x}{\ln 2} - \frac{x^2}{2}\right]_{0}^{1} = \left[\frac{2}{\ln 2} - \frac{1}{2}\right] - \left[\frac{1}{\ln 2} - 0\right] = \frac{2 - 1}{\ln 2} - \frac{1}{2} = \frac{1}{\ln 2} - \frac{1}{2} \] 3. **Calculate \( \int_{1}^{2} (2^x + x - 2) \, dx \)**: \[ = \left[\frac{2^x}{\ln 2} + \frac{x^2}{2} - 2x\right]_{1}^{2} = \left[\frac{4}{\ln 2} + 2 - 4\right] - \left[\frac{2}{\ln 2} + \frac{1}{2} - 2\right] = \left[\frac{4 - 4\ln 2}{\ln 2}\right] - \left[\frac{2 - 2\ln 2}{\ln 2}\right] = \frac{2}{\ln 2} - \frac{1}{2} \] ### Step 6: Combine the results. Now we sum the three integrals: \[ \int_{-2}^{2} f(x) \, dx = \left(-\frac{3}{4\ln 2} + 2\right) + \left(\frac{1}{\ln 2} - \frac{1}{2}\right) + \left(\frac{2}{\ln 2} - \frac{1}{2}\right) \] Combine like terms: \[ = \left(-\frac{3}{4\ln 2} + \frac{1 + 2}{\ln 2}\right) + \left(2 - 1\right) = \left(-\frac{3}{4\ln 2} + \frac{3}{\ln 2}\right) + 1 = \left(\frac{12 - 3}{4\ln 2}\right) + 1 = \frac{9}{4\ln 2} + 1 \] ### Final Answer: Thus, the value of the integral \( \int_{-2}^{2} f(x) \, dx = 5 + \frac{9}{4\ln 2} \). ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

if f(x)=|x-1| then int_(0)^(2)f(x)dx is

If f(x)= |x-21|+|x-1| then evaluate int_-2^2f(x)dx.

If 2f(x) - 3 f(1//x) = x," then " int_(1)^(2) f(x) dx is equal to

If f(x) in inegrable over [1,2] then int_(1)^(2) f(x) dx is equal to :

If f(x) satisfying the conditions of Rolle's theorem in [1,2] and f(x) is continuous in [1,2] then int_(1)^(2) f'(x) dx =

If : x(x^(4)+1).f(x)=1 , then : int_(1)^(2)f(x)dx=

Let f(x)=int_(-2)^(x)|x+1|dx, then

If int_(-1) ^(4) f(x) dx=4and int_(2)^(4) (3-f(x))dx=7, then int_(-1) ^(2) f(x) dx=